邓树勋《运动生理学》(第2版)配套题库-课后习题-运动的能量代谢【圣才出品】
- 格式:pdf
- 大小:318.86 KB
- 文档页数:6
第7章血液循环1.如何评价心脏功能的好坏?答:(1)每搏输出量和射血分数①每搏输出量每搏输出量简称搏出量,是指一次心搏由一侧心室射出的血量,相当于心室舒张末期容量和收缩末期容量之差。
②射血分数射血分数是指搏出量占心室舒张末期充盈量的百分比,反映了心室的泵血效率。
评价心脏泵血功能,射血分数比搏出量更好。
(2)每分输出量和心指数①每分输出量每分输出量简称心输出量,是指每分钟由一侧心室所输出的血量,等于搏出量与心率的乘积。
正常心率以75次/min计算,搏出量约70mL,心输出量约为5L/min。
②心指数心指数是指以每平方米体表面积计算的心输出量。
我国中等身材的成年人心指数约为3.0~3.5L/min•m2。
在进行不同个体间比较时,会因个体的新陈代谢总量差异而难以进行合理比较,采用以每平方米体表面积计算心输出量的心指数便有其存在价值。
(3)心力储备心泵功能储备简称心力储备,是指心输出量随着机体代谢需要而增加的现象。
心力储备包括心率储备和搏出量储备,后者又包括收缩期储备和舒张期储备。
通常舒张期储备很少,运动时机体主要通过动员心率储备和收缩期储备而使心输出量大幅增加。
①心率储备心率储备是指依靠心率增加而使心输出量增加的能力。
运动训练不能提高最大心率,人的最高心率主要取决于年龄。
估算人体最高心率的经验公式是:HR=220-年龄。
耐力训练能降低安静心率,故耐力运动员的心率储备较大。
②搏出量储备搏出量储备包括收缩期储备和舒张期储备。
前者是指依靠心室收缩力增强,使心室收缩末期容积减小的幅度。
后者是指心室舒张末期容积可增加的幅度。
2.剧烈运动后怎样做有利于疲劳的消除?答:剧烈运动时,由于血液大部分流向运动的肌肉,为了加速疲劳的消除,就应促使肌肉中大量的静脉血液快速流回心脏,进行肺循环,从而使静脉血动脉化,清除其中致疲劳的代谢废物。
(1)促进静脉血液回流的措施根据影响静脉回心血量的因素,剧烈运动后应先慢跑或走一段时间,同时注意加深呼吸,等到机体平缓一些后,可以降低体位或平躺。
第19章体适能与运动处方一、名词解释1.体适能答:体适能是指在应付日常工作之余,身体不会感到过度疲倦,还有余力去享受休闲及应付突发事件的能力。
体适能由健康体适能和技能体适能组成。
2.健康体适能答:健康体适能是与健康有密切关系的体适能,是指心血管、肺和肌肉发挥最理想效率的能力。
它不仅是机体维护自身健康的基础,而且还是机体保证以最大活力完成日常工作和降低慢性疾病危险因素出现的条件。
主要内容包括有氧适能、肌适能、身体成分和柔韧素质。
3.技能体适能答:技能体适能是指与动作、舞蹈和体操等表现有关的运动技术能力。
主要包括灵敏、平衡、协调、速度、爆发力和反应时间等。
该要素一般受遗传的控制,是从事各种运动项目的基础。
然而目前还没有证据表明这些要素与增进健康和预防疾病有直接关系。
如身体协调性好的人群并不比差的人群存活时间长或患病机会少。
4.有氧适能答:有氧适能是指人体摄取、运输和利用氧的能力。
它是实现有氧工作的基础,故又可称为有氧工作能力,有氧适能水平愈高,有氧工作能力愈强。
有氧工作能力是人体最基本的工作能力,人们的日常活动、劳动都属于有氧工作,均与自身有氧适能密切相关,在耐力性运动中有氧适能更是起着决定性作用。
这些都说明,有氧适能在提高人体的适应能力和健康水平中是非常重要的。
5.氧的利用率答:氧的利用率是指动脉血中的氧被组织所利用的比率肌肉利用氧的能力可由氧的利用率来衡量,其具体数值可由动静脉氧差算出。
如:安静时,动脉血的氧含量每100m1血约为20ml,而每100ml静脉血的氧含量约为14~15m1,动静脉血氧差为5~6ml或50~60ml/L,此时氧的利率=[(20-14)÷20]×100=30,则动脉血中的氧有30%被组织所利用。
安静时,氧的利用率约为25~30%。
运动时,氧的利用率可增加到70%,而优秀的耐力运动员可增高至77%,研究表明,耐力训练可提高肌肉对氧的利用率。
6.肌肉耐力答:肌肉耐力是指肌肉在某一负荷下能长时间保持持续收缩的能力。
第1篇运动生理学基础第1章运动的能量代谢第2章肌肉活动一、概念题1.兴奋答:兴奋是指机体代谢、功能从相对静止状态转变为活动状态,或是从弱的活动状态转变为强的活动状态,是产生动作电位本身或动作电位的同义语。
2.兴奋性答:兴奋性是指组织细胞接受刺激具有产生动作电位的能力,是肌肉在刺激作用下具有产生兴奋的特性。
兴奋性是一切生命体所具有的生理特性,不同组织细胞的兴奋性不同。
3.动作电位答:动作电位是指可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化。
动作电位的成因首先是细胞在有效刺激作用下膜的逐步去极化,当膜去极化达到阈电位水平时,膜对Na+的通透性迅速提高(快钠通道开放),Na+迅速大量地由膜外向膜内移动,钠的内流形成了动作电位的除极相,动作电位相当于钠的平衡电位。
4.肌小节答:肌小节是指在肌原纤维上相邻两Z线之间的一段肌原纤维。
它包括中间的暗带和两侧各1/2的明带。
肌小节又是由更微细的平行排列的粗肌丝和细肌丝组成的。
5.肌肉的兴奋一收缩耦联答:兴奋-收缩耦联是指把以肌细胞膜的电变化为特征的兴奋过程与肌丝滑行为基础的收缩过程联系在一起的中介过程。
目前研究认为,肌肉的兴奋-收缩耦联至少包括三个主要步骤:①电兴奋通过横管系统传向肌细胞深处;②三联管结构处的信息传递;③肌浆网中Ca2+释放入胞浆以及Ca2+由胞浆向肌浆网的再聚积。
6.缩短收缩答:缩短收缩是指当肌肉收缩产生的张力大于外加的阻力时,肌肉收缩,长度缩短的收缩形式。
缩短收缩时肌肉起止点互相靠近,又称向心收缩。
7.拉长收缩答:拉长收缩是指当肌肉收缩产生的张力小于外加的阻力时,肌肉积极收缩,被拉长的收缩形式。
拉长收缩时肌肉起止点相离,又称离心收缩。
8.等长收缩答:等长收缩是指当肌肉收缩产生的张力等于外加的阻力时,肌肉积极收缩,长度不变的收缩形式。
等长收缩时负荷未发生位移,从物理学角度认识,肌肉没有做外功,但仍消耗很多能量。
9.肌电图答:肌电图是指通过肌肉电图仪的引导和放大,把肌肉兴奋时产生的动作电位描记下来所得到的图形。
第22章慢性疾病患者与运动1.简述骨质疏松、高脂血症、高血压、糖尿病的分型与发病机理。
答:(1)骨质疏松的分型与发病机理①根据骨质疏松的病因学分类,分为:a.原发性骨质疏松原发性骨质疏松是指骨骼随着年龄的增长必然发生的一种生理性退行性病变。
原发性骨质疏松症可分为两型,包括I型为绝经后骨质疏松,属于高转换型骨质疏松症。
Ⅱ型为老年性骨质疏松,属于低转换型骨质疏松,一般发生于65岁以上的老年人。
b.继发性骨质疏松继发性骨质疏松是指由其他疾病、药物等一些因素诱发的骨质疏松。
c.特发性骨质疏松特发性骨质疏松是一种多见于8~14岁的青少年或成人的一种没有明确发病原因的全身性骨代谢疾病。
患者多伴有遗传家族史,女性多于男性。
妇女妊娠及哺乳期所发生的骨质疏松也属于特发性骨质疏松。
②导致骨质疏松的病因有:内因,包括性别、年龄、激素调节、遗传等因素。
外因,包括营养、运动等因素。
(2)高脂血症的分型和发病机理①分型a.世界卫生组织(WHO)制定的分类系统根据脂蛋白组分含量的不同进行分类,基于各种血浆脂蛋白升高的程度不同而将高脂蛋白血症分为五型(Ⅰ、Ⅱ、Ⅲ、Ⅳ和V型)。
b.按是否继发于全身系统性疾病分类,原发性血脂异常:罕见,病因不明,属遗传性脂代谢紊乱疾病;继发性血脂异常:较为常见,多数是由于血浆脂蛋白分解代谢受损所致,常见于控制不良糖尿病、饮酒、甲状腺功能减退症、肾病综合征、肾透析、肾移植、胆道阻塞、口服避孕药等。
②发病机理脂蛋白代谢过程极为复杂,不论何种病因引起脂质来源、脂蛋白合成、代谢过程关键酶异常或降解过程受体通路障碍等均可能导致血脂异常。
(3)高血压的分型和发病机理①根据病因可分为原发性和继发性两大类。
a.原发性高血压原发性高血压是指病因不明高血压,是以血压升高为主要临床表现并伴或不伴有多种心血管危险因素的综合征,占总高血压患者的95%以上。
b.继发性高血压继发性高血压是指具有明确而独立的病因的高血压,是某些疾病的临床上表现,占总高血压患者的5%以下。
第11章有氧工作能力一、名词解释1.需氧量答:需氧量是指人体为维持某种生理活动所需要的氧量。
通常以每分钟为单位计算,正常成人安静时需氧量约为250ml/min。
运动时需氧量随运动强度而变化,并受运动持续时间的影响。
2.吸氧量答:吸氧量是指单位时间内,机体摄取并被实际消耗或利用的氧量,又称摄氧量或耗氧量。
通常以每分钟为单位计量摄氧量。
安静时,机体代谢水平低,能量消耗少,每分摄氧量与每分需氧量是平衡的。
3.氧亏答:氧亏是指在运动过程中,机体摄氧量满足不了运动需氧量,造成的体内氧的亏欠。
氧亏的形成主要是由于运动初期ATP、CP的消耗以及人体的氧运输系统的生理惰性,氧运输系统的功能不能立即提高到与运动的需要相适应而形成的。
4.运动后过量氧耗答:运动后过量消耗是指运动后恢复期内,为了偿还运动中的氧亏,以及在运动后使处于高水平代谢的机体恢复到安静水平时消耗的氧气量。
为了偿还运动中所欠下的氧亏,在恢复期机体并不能立即恢复到安静状态,而是逐渐恢复到安静时的水平。
5.最大摄氧量答:最大摄氧量是指人体在进行有大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧量,又称最大吸氧量、最大耗氧量。
它反映了机体吸入氧、运输氧和利用氧的能力,是评定人体有氧工作能力的重要指标之一。
6.有氧工作能力答:有氧工作能力是指人的有氧供能的能力。
这种能力包括最大吸氧量、维持最大和次最大吸氧量的能力。
最大射氧量(Vo2max)和乳酸阈(LT)是评定人体有氧工作能力的重要指标,二者反映了不同的生理机制。
前者主要反映心肺功能,后者主要反映骨骼肌的代谢水平。
7.有氧耐力答:有氧耐力是指人体长时间进行有氧工作的能力。
最大摄氧量是有氧耐力的基础,其值越大,有氧耐力水平越高。
有氧耐力不仅与最大吸氧量的大小有关,而且与维持最高摄氧水平的能力有关。
8.乳酸阈答:乳酸阈是指人体在完成逐级递增负荷运动时,血乳酸开始急剧堆积的临界点,反映人体的代谢供能方式由有氧代谢为主开始向无氧代谢为主过渡。
第4章运动与内分泌一、名词解释1.内分泌答:内分泌是指分泌细胞将所产生的激素直接分泌到体液中,以体液为媒介对靶细胞产生效应的一种分泌形式。
内分泌系统是指一群特殊化的细胞组成的内分泌腺。
它们包括垂体、甲状腺、甲状旁腺、肾上腺、性腺、胰岛、胸腺及松果体等。
这些腺体分泌高效能的有机化学物质(激素),经过血液循环而传递化学信息到其靶细胞、靶组织或靶器官,发挥兴奋或抑制作用。
2.内分泌系统答:内分泌系统是一个由内分泌腺和分散存在于某些组织器官中的内分泌细胞组成体内信息传递系统,它与神经系统相辅相成,共同调节机体的各种功能活动,维持内环境的相对稳定,并影响行为和控制生殖。
在内分泌系统中,内分泌腺是指人体内一些无输出导管的腺体,其结构特点是:腺细胞排列成索状、团状或围成泡状,不具排送分泌物的导管,毛细血管丰富。
内分泌细胞的分泌物称激素,按照化学性质的不同,可以分为含氮激素和类固醇激素两大类。
3.外分泌答:外分泌是指人或高等动物体内,有些腺体的分泌物通过导管排出体外或引至体内的其他部分。
具有外分泌的腺体叫外分泌腺,如唾腺、胃腺、消化腺、汗腺、皮脂腺。
在脊椎动物,最明显的外分泌有汗、皮脂、泪、乳、消化液等;在无脊椎动物具有特殊的外分泌,如多数昆虫类的茧、蜜蜂的蜡以及各种动物的壳等。
另外,动物界还普遍有毒液、粘液等信息素的外分泌。
有时把废物的排泄也看作是一种外分泌4.激素答:激素是指人或高等动物体内的内分泌腺或内分泌细胞分泌的具有高度活性的有机物质。
仅需很小剂量的激素便可以改变细胞的新陈代谢。
可以说激素是一种从一个细胞传递到另一个细胞的化学信使。
所有的多细胞生物都会产生激素,植物产生的激素也被称为植物激素。
动物产生的激素通常通过血液运输到体内指定位置,细胞通过其特殊的接受某种激素的受体来对激素进行反应。
激素分子与受体蛋白结合后,打开了信号通路进行信号转导,并最终使细胞做出特异性反应。
5.第二信使学说答:第二信使学说是E.W.萨瑟兰于1965年首先提出。
第11章有氧工作能力1.最大摄氧量和乳酸阈都是反应人体有氧耐力的生理指标,试从生理学的角度分析它们的异同点。
答:(1)二者的相同点同最大摄氧量一样,乳酸阈也是反映有氧耐力的一个重要指标。
(2)二者的不同点①最大摄氧量是指人体在进行激烈运动中,心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧气量。
②乳酸阈是指当运动强度超过某一负荷时乳酸浓度急剧上升的开始点,是人体的代谢供能方式由有氧代谢为主开始向无氧代谢为主过渡的临界点,通常以血乳酸急剧增加的起始点(乳酸拐点)所对应的强度来表示。
③最大摄氧量反映人体在运动时所摄取的最大氧量,而乳酸阈则反映人体在递增负荷运动中血乳酸浓度没有急剧堆积时的最大摄氧量实际所利用的百分比,即最大摄氧量利用率(%Vo2max)。
其值越高,有氧工作能力越强;反之,有氧工作能力越低。
2.有氧耐力的生理学基础能否可以理解为是最大摄氧量生理机制?为什么?答:(1)人体有氧耐力取决于机体氧的运输系统功能、肌肉利用氧的能力、神经调节能力和能量供应特点等因素。
心肺功能是影响有氧耐力的中枢机制,而肌纤维类型的百分比组成及其骨骼肌的代谢特征是影响有氧耐力的外周机制。
①氧运输系统的功能a.肺的通气与换气机能影响人体吸氧能力:肺通气量越大,吸入体内的氧就越多,呼吸频率和呼吸深度影响肺通气量的变化。
运动时提高和掌握有效的呼吸动作,增强呼吸机能就能提高有氧耐力。
b.心脏的泵血功能与有氧耐力密切相关:心输出量受每搏输出量和心率的制约,而每搏输出量决定于心肌收缩力量和心室腔容积的大小。
c.红细胞的数量是影响有氧耐力的一个因素:血液中红细胞所含的血红蛋白,携带氧进行运输。
运动员血红蛋白含量假如下降10%,则往往引起运动成绩下降。
②骨骼肌的特征肌组织的有氧代谢机能影响有氧耐力。
肌肉内毛细血管网开放数量的增加,可使单位时间内肌肉血流量增加,血液可携带更多的氧供给肌肉。
优秀的耐力运动员慢肌纤维百分比高,肌红蛋白、线粒体和氧化酶活性高、毛细血管数量增加。
第16章运动与环境1.通常人体散热的首要方式是什么?运动时人体散热的主要方式是什么?答:(1)皮肤是人体主要的散热器官(约占84.5%),它通过传导、对流、辐射、蒸发四种方式向体外散发热量。
辐射是指机体热量以红外线方式传给外界较冷物的一种散热形式,这是人体热量散失的主要方式。
(2)发汗是指通过汗腺分泌汗液散发大量热量的散热过程。
当人体进行剧烈运动时汗液蒸发明显增多,发汗成为运动中主要的散热方式。
2.人体运动时体温会发生什么变化?为什么?答:体温是指人体内部的温度,临床上常以直肠温度(37.3℃~37.5℃)、口腔温度(比直肠温度低0.3℃~0.5℃)、腋下温度(比口腔温度低0.2℃~0.4℃)表示。
人体运动时,体温会有很小的升高,不会变化很大,因为有通过汗液进行调节,当环境温度高于体温或人体在运动时,蒸发是主要的散热方式。
蒸发散热的方式有:(1)不感汗蒸发不感汗蒸发是指体液中少量水分直接从皮肤和呼吸道粘膜等表面渗透出,在未聚集成明显的汗滴之前即被蒸发的一种持续性的散热形式。
(2)发汗发汗是指通过汗腺分泌汗液散发大量热量的散热过程。
当人体进行剧烈运动时汗液蒸发明显增多,发汗成为运动中主要的散热方式。
3.中暑性痉挛、热疲劳、中暑各有什么不同?答:(1)中暑性痉挛中暑性痉挛是指运动中由于肌肉的过度运用,致使体内的矿物质丢失和大量出汗伴随的脱水所引起的骨骼肌严重痉挛。
出现中暑性痉挛时,可以通过到凉爽的地方和补充盐溶液而得到恢复。
(2)热疲劳热疲劳是指运动中由于心血管系统不能满足身体的需要而出现极度疲劳、呼吸微弱、头昏眼花、呕吐、昏阙、皮肤干燥、低血压等现象。
出现热疲劳时,将患者置于较凉的环境下休息,仰卧并抬高下肢,适量补充盐溶液,会使病情得到缓减。
否则,热疲劳极易转为中暑。
(3)中暑中暑是一种威胁生命的热紊乱,这种热紊乱会导致身体的温度调节装置失控,其典型症状为:体内温度超过40℃,停止出汗,皮肤干燥,脉搏和呼吸加快,血压升高,意识混乱或丧失。
第14章运动过程中人体机能状态的变化一、名词解释1.赛前状态答:赛前状态是指在比赛前或运动前,人体各器官,系统会产生一系列机能变化。
运动员赛前心理状态分为四种:赛前过分激动、赛前淡漠、赛前盲目自信和赛前战斗准备状态。
2.准备活动答:准备活动是指在正式训练和比赛前为提高身体机能而进行的有组织、有目的、专门的身体练习。
准备活动的生理作用为提高中枢神经系统兴奋水平,使中枢神经系统与内分泌系统协同调控全身各脏器机能活动,以适应机体承受大负荷强度刺激的需要;增强氧运输系统的机能,使肺通气量、摄氧量和心输出量增加,有利于提高工作肌的代谢水平;使体温升高,氧离曲线右移,促进氧合血红蛋白的解离,有利于氧供应。
3.一般性准备活动答:一般性的准备活动是指促进学生身体全面发展的活动。
通常有各种走、跑、跳、投练习、各种徒手操或持轻器械练习、传统项目基本动作、游戏、舞蹈等。
专门性的准备活动是指其动作的性质和结构与基本教材有关或相近似的练习。
主要有模仿练习、诱导练习或辅助练习、基本功以及掌握该项教材内容所必需的身体素质练习等。
4.专门性准备活动答:专门性准备活动是指与正式比赛或训练的动作结构、节奏及运动强度相似的各种身体练习。
专门性准备活动是在一般性练习基础上,采用动作性质相似和结构与基本部分教材相类似的专门性练习。
这是一般性练习无法代替的。
只有合理地安排一般性和专门性准备活动练习的比重,才能保证体育课任务的顺利完成。
5.进人工作状态答:进入工作状态是指在运动的开始阶段,人体各器官系统的工作能力不可能立刻达到最高水平,而是有一个逐步提高的过程。
进入工作状态所需时间的长短取决于工作强度、工作性质、个人特点、训练水平和当时的机能状态。
在适宜运动负荷下工作强度越高,进入工作状态的时间就越短;动作越复杂、活动变换越频繁,进入工作状态越慢。
训练水平越高,机能状态越好,进人工作状态越快。
6.极点答:极点是指在进行强度较大、持续时间较长的剧烈运动中,由于运动开始阶段内脏器官的活动不能满足运动器官的需要,练习者常常产生一些非常难受的生理反应,如呼吸困难、胸闷、头晕、心率剧增、肌肉酸软无力、动作迟缓不协调,甚至产生停止运动的念头等。
第14章运动过程中人体机能状态的变化1.在运动过程中一般会出现几次“极点”和“第二次呼吸”?所有的运动项目中会出现“极点”和“第二次呼吸”吗?为什么?答:(1)“极点”是指在进行强度较大、持续时间较长的剧烈运动中,由于运动开始阶段内脏器官的活动不能满足运动器官的需要,练习者常常产生一些非常难受的生理反应时的机能状态。
“极点”是运动中机能暂时紊乱的一种表现。
(2)“第二次呼吸”是指在“极点”出现后,通过调整运动,不良生理反应逐渐减轻,呼吸自如,动作轻松,运动员能以较好的机能状态继续运动下去的状态。
(3)不同的运动项目、运动强度、训练水平、赛前状态及准备活动等因素均可影响到“极点”和“第二次呼吸”的出现。
①运动强度较大、持续时间较长的周期性项目中运动者的“极点”反应较明显。
②训练水平越低,气候闷热,“极点”出现的越早,反应也越明显,消失得也越迟。
③良好的赛前状态与充分的准备活动能推迟“极点”的出现和减弱“极点”反应。
2.准备活动与整理活动有何区别?在不同的运动项目中如何合理利用?请举例分析。
答:(1)准备活动准备活动是指在正式训练和比赛前为提高身体机能而进行的有组织、有目的、专门的身体练习。
适度的肌肉活动能在中枢神经系统的相关部位留下兴奋性提高的痕迹,在这一痕迹效应的基础上进行正式练习,有利于发挥最佳机能水平。
准备活动的生理作用表现在以下几个方面:①提高中枢神经系统兴奋水平,使中枢神经系统与内分泌系统协同调控全身各脏器机能活动,以适应机体承受大负荷强度刺激的需要。
②增强氧运输系统的机能,使肺通气量、摄氧量和心输出量增加,心肌和骨骼肌中毛细血管扩张,有利于提高工作肌的代谢水平。
③使体温升高,氧离曲线右移,促进氧合血红蛋白的解离,有利于氧供应。
体温升高可以提高酶的活性,提高神经传导速度和肌肉收缩速度。
④降低肌肉的黏滞性,增加弹性,预防肌肉损伤。
⑤增强皮肤血流,利于散热,防止热应激伤害。
(2)整理活动整理活动是指在正式练习后所做的一些加速机体功能恢复的较轻松的身体练习。
第1章运动的能量代谢
一、概念题
1.能量代谢
答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
2.生物能量学
答:生物能量学是研究与生命现象相伴的活体内能量的进出和转换的生物物理学的一个分支学科。
从生物化学的角度,正进行着与活体能量转换有关的生物膜、肌肉(收缩性蛋白质)和酶合成的本质的探究,以及以ATP为中心的活体的能量流通机理的研究。
3.磷酸原供能系统
答:磷酸原供能系统是指ATP、ADP和磷酸肌酸(CP)组成的系统,由于它们都属高能磷酸化合物,故称为磷酸原系统(ATP-CP系统)。
磷酸原系统在代谢过程中不需要氧的参与,能瞬时供应能量。
4.糖酵解供能系统
答:糖酵解供能系统是指糖在相对缺氧的条件下(不完全氧化)合成ATP并产生乳酸的过程。
在三大营养物质中,只有糖能够直接在相对缺氧的条件下(不完全氧化)合成ATP。
5.有氧氧化供能系统
答:有氧氧化供能系统是指糖、脂肪和蛋白质在细胞内(主要是线粒体内)彻底氧化成H2O和CO2的过程中,再合成ATP的能量系统。
细胞在生命活动中首先以糖类作为有氧氧化的燃料,机体糖供应相对不足时再消耗脂肪,仅在糖及脂肪均相对不足时蛋白质才作为有氧氧化的底物。
6.基础代谢率
答:基础代谢率是指人体在清醒而又极端安静的状态下,不受肌肉活动、环境温度、食物及精神紧张等影响时的能量代谢率。
基础代谢率以每小时每平方米体表面积的产热量为单位,通常以kj/(m2·h)来表示。
7.能量代谢的整合
答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
大强度运动中各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足体力活动的基本器官肌肉对能量的需求。
8.最大摄氧量
答:最大摄氧量是指人体在进行有大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧量,又称最大吸氧量、最大耗氧量。
它反映了机体吸入氧、运输氧和利用氧的能力,是评定人体有氧工作能力的重要指标之一。
9.运动节省化
答:当机体在同等负荷运动下能够达到更大的功率输出或更高的摄氧量水平,表明运动节省化程度提高。
运动节省化较最大摄氧量具有更高的可训练性,特别是对于优秀运动员,长期的运动训练可使其最大摄氧量处于稳定状态,此时其有氧运动能力的提高有赖于运动节省化水平的改善。
二、简答题
1.简述能量的来源与去路。
答:(1)能量的来源
①糖类
a.人体食物中糖类的消化产物多以单糖葡萄糖的形式被吸收。
b.1g糖在体内完全氧化可释放约4kcal的热量,机体所需能量的50%~70%来自糖。
c.葡萄糖在正常情况下被合成为多糖,以糖原的形式储存或被合成脂肪。
d.肌糖原是骨骼肌中的储备能源,满足骨骼肌在紧急情况下的需要;肝糖原贮量不大,参与对血糖水平的维持。
e.供氧充足时,糖通过有氧氧化完全分解为二氧化碳和水,释放大量的能量;供氧不足时,葡萄糖经无氧酵解释放的能量比有氧氧化少,但其供能速率明显提高。
②脂肪
a.脂肪又称三脂肪酸甘油酯或甘油三酯,是细胞能量的主要存储形式,由3分子脂肪酸和1分子甘油组成。
b.脂肪和类脂总称为脂类;类脂包括类固醇及其酯、磷脂和糖酯等,是细胞的膜结构重要成分。
c.1g脂肪在体内完全燃烧(氧化)可释放的热量为糖的2倍多,约9.5kcal。
③蛋白质
a.蛋白质主要由氨基酸组成;氨基酸来源于食物和组织、细胞内蛋白质分解。
b.蛋白质在体内完全氧化大约释放4.3kcal的热量,成人每天约有18%的能量来自蛋白质,蛋白质的供能作用是蛋白质的次要功能,可由糖及脂肪代替。
(2)能量的去路
①细胞合成代谢中储存的化学能。
②肌肉收缩完成机械外功,转变为热能。
③体内能量的释放、转移、储存和利用。
2.能量代谢对急性运动的反应是什么?
答:急性运动对能量代谢的影响主要包括以下几个方面:
(1)急性运动时的无氧代谢
①无氧代谢的非乳酸成分
无氧代谢的非乳酸成分是指在极性运动初期,能量来源于ATP、CP分解,不需要氧的参与,也不产生乳酸的代谢过程。
急性运动刚开始的能量主要来源于ATP、CP的分解。
磷酸原供能系统提供的ATP有限,能量供应总量最低,仅能维持持续数秒钟的极大强度运动。
②无氧代谢的乳酸成分
无氧代谢的乳酸成分是指由糖酵解供能过程中,不需氧的参与,同时产生乳酸的代谢过程。
a.当运动维持足够的强度并继续持续时,呼吸和循环系统不能满足运动骨骼肌对氧的需求,糖酵解供能系统占据能量供应的主导地位。
b.糖酵解过程中,ATP的分解产物ADP接受糖原或葡萄糖不完全分解产生的高能磷酸键再合成ATP(底物水平磷酸化),同时产生大量乳酸。
c.糖酵解供能系统能够提供的能量总量也相对较低,机体将很快出现疲劳,不能维持长时间运动能量的需要。
d.源自糖酵解供能系统的再合成ATP速率约在运动后5s达到峰值,并维持数秒钟。
但是大强度运动中糖酵解供能过程的速率可提高到安静状态的100倍。
e.糖酵解供能的功率输出比磷酸原供能系统低,但再合成ATP的总量较高,因此维持运动的时间延长。
(2)急性运动时的有氧代谢
①有氧代谢较磷酸原和糖酵解供能系统化学过程涉及相对更多的细胞反应部位,因而功率输出相对最低。
②低、中强度运动中,呼吸和循环系统的动员能够满足运动骨骼肌对氧气的需求,充足的代谢底物使有氧代谢相对无氧代谢能够提供更大的能量供应总量。
因此,运动的时间大为延长。
③当运动强度小于无氧阈强度时,呼吸和循环的动员能够满足运动骨骼肌对氧的需求,有氧代谢开始占据主导供能地位,摄氧动力学曲线将呈平台分布,摄氧量最终稳定维持于某一水平;当运动强度大于无氧阈强度时,摄氧动力学曲线多出现持续几分钟的慢成分,直至最大摄氧量平台出现;而在极大强度运动时,摄氧动力学曲线将不出现平台,而是持续增高,直至运动疲劳,依运动强度而定,摄氧量水平达到或不能达到最大摄氧量。
3.简述急性运动中能量代谢的整合。
答:能量代谢是指生物体内物质代谢过程中所伴随的能量储存、释放、转移和利用的过
程。
急性运动中能量代谢的整合主要包括以下几个方面:
(1)大强度运动中各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足体力活动的基本器官肌肉对能量的需求。
(2)一般来讲,依运动模式、运动持续时间和强度不同,3种供能系统都参与能量供应,只不过各自在总体能量供应中所占的比例不同。
4.试述能量代谢对慢性运动的适应。
答:慢性运动队能量代谢的影响主要表现在以下几个方面:
(1)慢性运动可上调其主要能量代谢供能系统的酶活性,使急性运动对神经、激素的调节更加敏感,内环境变化时各器官系统的功能更加协调,同时加速能源物质以及各代谢调节系统的恢复,促进疲劳的消除。
(2)慢性运动对能量代谢的影响还可以用运动或能量节省化反映。
当机体在同等负荷运动下能够达到更大的功率输出或更高的摄氧量水平,表明机体的运动节省化程度提高。