运动生理学邓树勋、王健、乔德才主编(第二版)讲义
- 格式:ppt
- 大小:1.18 MB
- 文档页数:103
第1章运动的能量代谢一、概念题1.能量代谢答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
2.生物能量学答:生物能量学是研究与生命现象相伴的活体内能量的进出和转换的生物物理学的一个分支学科。
从生物化学的角度,正进行着与活体能量转换有关的生物膜、肌肉(收缩性蛋白质)和酶合成的本质的探究,以及以ATP为中心的活体的能量流通机理的研究。
3.磷酸原供能系统答:磷酸原供能系统是指ATP、ADP和磷酸肌酸(CP)组成的系统,由于它们都属高能磷酸化合物,故称为磷酸原系统(ATP-CP系统)。
磷酸原系统在代谢过程中不需要氧的参与,能瞬时供应能量。
4.糖酵解供能系统答:糖酵解供能系统是指糖在相对缺氧的条件下(不完全氧化)合成ATP并产生乳酸的过程。
在三大营养物质中,只有糖能够直接在相对缺氧的条件下(不完全氧化)合成ATP。
5.有氧氧化供能系统答:有氧氧化供能系统是指糖、脂肪和蛋白质在细胞内(主要是线粒体内)彻底氧化成H2O和CO2的过程中,再合成ATP的能量系统。
细胞在生命活动中首先以糖类作为有氧氧化的燃料,机体糖供应相对不足时再消耗脂肪,仅在糖及脂肪均相对不足时蛋白质才作为有氧氧化的底物。
6.基础代谢率答:基础代谢率是指人体在清醒而又极端安静的状态下,不受肌肉活动、环境温度、食物及精神紧张等影响时的能量代谢率。
基础代谢率以每小时每平方米体表面积的产热量为单位,通常以kj/(m2·h)来表示。
7.能量代谢的整合答:能量代谢是指伴随物质代谢发生的能量释放、转移和利用等过程,它是以ATP为中心进行的。
在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。
大强度运动中各能量代谢系统对能量供应的参与并非以顺序出现,而是相互整合、协调,共同满足体力活动的基本器官肌肉对能量的需求。
8.最大摄氧量答:最大摄氧量是指人体在进行有大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧量,又称最大吸氧量、最大耗氧量。
第18章肥胖与体重控制1.研究体成分和肥胖有何现实意义?答:体重、体成分控制的生理意义包括以下几个方面:(1)避免多种疾病的发生并保障人体的健康①体脂过多的危害肥胖给生活、工作带来诸多不便,易导致多种疾病发生。
②体脂过少的危害如长期节食、营养不良、厌食症及其他疾病造成的体脂过少时,人体会出现代谢紊乱、身体功能失调(如闭经),严重者可导致死亡。
所以合理的体脂比例才有利于健康长寿。
(2)保持运动员的运动状态并获得最佳的运动成绩①体操、中长跑、跳高、跨栏、艺术体操等运动项目,要求运动员体重较轻,而且体脂比例较低、肌肉比例较高。
②以体重分级的项目,如举重、摔跤、柔道等,既要求保存肌肉力量又需要去掉不必要的脂肪。
③有些以力量和爆发力为主的项目,如投掷项目,要求增加瘦体重。
④耐力项目的运动成绩与体脂百分比呈负相关,所以耐力项目运动员体脂的多少,在一定程度上反映了他们训练程度的高低。
⑤测定体成分对指导运动员达到理想体重、发挥运动潜力、提高运动能力,帮助教练员找到合理的体重调控方法,合理安排训练以及运动员的科学选材,都具有重要意义。
2.体成分控制与体重控制一样吗?运动员控制体成分和体重应注意哪些问题?答:(1)不一样①体成分是指组成人体的各组织、器官的总成分。
常以体脂百分数或去脂体重(kg)来表示,体脂百分比=体脂重/体重×100。
②体重是指组成人体的各组织、器官的总成分的重量。
体重可分为脂肪重(即体脂重)和去脂体重(又称瘦体重,通常用以反映人体肌肉量)。
运动员的理想体重与体成分是指其获得最佳运动能力时的体重和体脂百分比,即获得最大力量、速度和耐力时的最小体脂百分比的体重。
(2)Lamb提出可通过确定理想体脂百分比的方法来确定理想体重。
运动员理想体重=100×瘦体重/(100-理想体脂百分比×100)。
不同运动项目的理想体重不同。
3.肥胖的诊断方法和判定标准有哪些?答:肥胖是脂肪在体内积累过量的表现,在肥胖诊断实践中,常用的检测指标包括以下几项:(1)肥胖度(%)①肥胖度的计算公式肥胖度(%)=[实际体重(kg)/标准体重(kg)-1]×100%。
第1篇运动生理学基础第1章运动的能量代谢第2章肌肉活动一、概念题1.兴奋答:兴奋是指机体代谢、功能从相对静止状态转变为活动状态,或是从弱的活动状态转变为强的活动状态,是产生动作电位本身或动作电位的同义语。
2.兴奋性答:兴奋性是指组织细胞接受刺激具有产生动作电位的能力,是肌肉在刺激作用下具有产生兴奋的特性。
兴奋性是一切生命体所具有的生理特性,不同组织细胞的兴奋性不同。
3.动作电位答:动作电位是指可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化。
动作电位的成因首先是细胞在有效刺激作用下膜的逐步去极化,当膜去极化达到阈电位水平时,膜对Na+的通透性迅速提高(快钠通道开放),Na+迅速大量地由膜外向膜内移动,钠的内流形成了动作电位的除极相,动作电位相当于钠的平衡电位。
4.肌小节答:肌小节是指在肌原纤维上相邻两Z线之间的一段肌原纤维。
它包括中间的暗带和两侧各1/2的明带。
肌小节又是由更微细的平行排列的粗肌丝和细肌丝组成的。
5.肌肉的兴奋一收缩耦联答:兴奋-收缩耦联是指把以肌细胞膜的电变化为特征的兴奋过程与肌丝滑行为基础的收缩过程联系在一起的中介过程。
目前研究认为,肌肉的兴奋-收缩耦联至少包括三个主要步骤:①电兴奋通过横管系统传向肌细胞深处;②三联管结构处的信息传递;③肌浆网中Ca2+释放入胞浆以及Ca2+由胞浆向肌浆网的再聚积。
6.缩短收缩答:缩短收缩是指当肌肉收缩产生的张力大于外加的阻力时,肌肉收缩,长度缩短的收缩形式。
缩短收缩时肌肉起止点互相靠近,又称向心收缩。
7.拉长收缩答:拉长收缩是指当肌肉收缩产生的张力小于外加的阻力时,肌肉积极收缩,被拉长的收缩形式。
拉长收缩时肌肉起止点相离,又称离心收缩。
8.等长收缩答:等长收缩是指当肌肉收缩产生的张力等于外加的阻力时,肌肉积极收缩,长度不变的收缩形式。
等长收缩时负荷未发生位移,从物理学角度认识,肌肉没有做外功,但仍消耗很多能量。
9.肌电图答:肌电图是指通过肌肉电图仪的引导和放大,把肌肉兴奋时产生的动作电位描记下来所得到的图形。
第22章慢性疾病患者与运动22.1 复习笔记一、运动与骨质疏松1.骨质疏松概述(1)骨质疏松的概念与分类①骨质疏松的概念骨质疏松是以骨量减少、骨的微观结构退化为特征的,致使骨的脆性增加以及易于发生骨折的一种全身性骨骼疾病。
②骨质疏松的分类根据骨质疏松的病因学分类,分为:a.原发性骨质疏松原发性骨质疏松是指骨骼随着年龄的增长必然发生的一种生理性退行性病变。
原发性骨质疏松症可分为两型,包括:第一,I型为绝经后骨质疏松,属于高转换型骨质疏松症。
第二,Ⅱ型为老年性骨质疏松,属于低转换型骨质疏松,一般发生于65岁以上的老年人。
b.继发性骨质疏松继发性骨质疏松是指由其他疾病、药物等一些因素诱发的骨质疏松。
c.特发性骨质疏松特发性骨质疏松是一种多见于8~14岁的青少年或成人的一种没有明确发病原因的全身性骨代谢疾病。
患者多伴有遗传家族史,女性多于男性。
妇女妊娠及哺乳期所发生的骨质疏松也属于特发性骨质疏松。
(2)骨质疏松的危害①发病率高,流行范围广,无明显患病的感觉和症状。
②治疗费用高,经济负担大。
③造成骨折,影响生活质量。
④较严重的骨质疏松可造成永久性残疾。
⑤骨折可引发心脑血管并发症,导致感染和褥疮等并发症,危害健康。
(3)骨质疏松的病因与诊断①骨质疏松的病因致病因素使骨代谢处于负平衡状态,导致骨量减少,骨强度降低,甚至骨折的发生。
导致骨质疏松的病因有:a.内因,包括性别、年龄、激素调节、遗传等因素。
b.外因,包括营养、运动等因素。
②骨质疏松的诊断骨质疏松通常通过检测骨密度进行诊断。
检测骨密度(BMD)的方法包括定量超声、CT、MRI等,而双能X线骨密度吸收仪(DXA)是测定BMD的最好的标准。
世界卫生组织(WHO)制定了以下的诊断标准(表22-1)。
表22-1 世界卫生组织有关骨质疏松症的诊断标准疾病诊断标准正常骨密度2.运动防治骨质疏松的机制研究表明,运动具有骨性效应,可以提高和维持BMD;运动是唯一的非药物疗法,具有副作用小,节省,持续时间长的特点。
第8章运动与免疫1.简述主要的免疫细胞以及主要作用。
答:免疫细胞是指机体内执行识别并排除体内的非己物质的细胞,即参与免疫应答或与免疫应答有关的细胞,包括淋巴细胞、单核细胞、粒细胞、肥大细胞等。
(1)淋巴细胞淋巴细胞在免疫应答中起核心作用。
包括T细胞、B细胞、K细胞(杀伤细胞)和NK 细胞(自然杀伤细胞)等。
①T细胞和B细胞是抗原特异性淋巴细胞或免疫活性细胞,能接受抗原刺激而活化、增生分化、发生特异性免疫反应。
②K细胞能够杀伤被抗体(IgG)覆盖的靶细胞,NK细胞能够直接杀伤某些肿瘤细胞或病毒感染的细胞。
(2)单核-巨噬细胞单核-巨噬细胞包括血液中的单核细胞和组织中的巨噬细胞。
巨噬细胞可由循环血内的单核细胞转变而来,两者共同构成单核-巨噬细胞系统,而发挥其防御功能。
这类细胞具有多种免疫机能,包括吞噬和杀伤作用,抗原递呈作用以及分泌作用。
(3)粒细胞粒细胞包括中性粒细胞、嗜酸性粒细胞以及嗜碱性粒细胞。
其中起免疫作用的主要是中性粒细胞。
①中性粒细胞是体内最有效的吞噬细胞,在入侵病原体的早期控制和防御急性感染中起着重要作用。
②嗜酸性粒细胞有微弱的吞噬作用,但基本上无杀菌力。
2.简述体液免疫应答反应的过程。
答:体液免疫的应答反应过程包括以下三个阶段:(1)感应阶段进入体内的抗原被巨噬细胞捕获,进行吞噬加工处理后,递呈给T H细胞,T H细胞受该抗原(处理过的)和IL-1诱导而活化。
这是一个抗原递呈过程,该过程需要MHC II(主要组织相容性复合体)参与。
(2)增殖和分化阶段T H细胞被活化后,发生增殖并释放出IL-2、B细胞分化因子以及B细胞生长因子。
B 细胞分化因子和B细胞生长因子能够促使B细胞使其成熟、增殖和分化成浆细胞(成熟的B 细胞)。
(3)效应阶段多数B细胞能够成为浆细胞,合成和分泌免疫球蛋白(抗体),然后由抗体直接或间接发挥免疫效应,杀灭进入人体的抗原物质;部分B细胞变为记忆性B细胞,以后若遇相同抗原刺激时可以很快产生相同抗体,并在相当长时间内维持较高的抗体浓度。
第4章运动与内分泌4.1 复习笔记一、概述1.内分泌系统和内分泌(1)内分泌系统内分泌系统是体内内分泌腺和分散存在于某些组织器官中的内分泌细胞组成的一个体内信息传递系统,它与神经系统密切联系,相互配合,共同调节机体的各种功能活动,维持内环境的相对稳定。
(2)激素的概念激素是指人或高等动物体内的内分泌腺或内分泌细胞分泌的具有高度活性的有机物质。
(3)激素的分泌途径①远距分泌远距分泌是大多数激素经血液循环转运到靶器官(或靶细胞)的方式。
②旁分泌旁分泌是指仅由组织液直接扩散而作用于邻近细胞的方式。
③神经分泌与神经内分泌神经分泌是指经神经纤维轴浆运输方式至其连接的组织;神经内分泌是指由神经元分泌的物质(神经激素)进入血液循环并影响机体其他部位细胞的功能的方式。
2.激素的生理作用和作用特征(1)激素的生理作用①调节三大营养物质及水盐代谢,参与维持内环境的相对稳定。
②促进细胞分裂、分化,调控机体生长、发育、成熟和衰老过程。
③影响神经系统发育和活动,调节学习、记忆及行为活动。
④促进生殖系统发育成熟,影响生殖过程。
⑤调节机体造血过程。
⑥与神经系统密切配合,增强机体对伤害性刺激和环境激变的耐受力和适应力,参与机体的应激反应。
(2)激素作用的特征①相对特异性激素的特异性是指某种激素释放入血液后,能选择性地作用于某些器官(包括内分泌腺)、组织和细胞。
②激素作用的高效性激素在血液中的生理浓度很低(一般在pmol/L~nmol/L数量级),但其效能却很显著。
③激素间的相互作用a.协同作用协同作用是指不同激素对同一生理活动都有增强效应;如生长素和肾上腺素都使血糖升高。
b.拮抗作用拮抗作用是指不同激素对某一生理活动作用相反;如胰高血糖素使血糖升高而胰岛素使血糖降低。
c.允许作用允许作用是指某种激素本身对某器官或细胞不发生直接作用,但它的存在却是另一激素产生生物效应或作用加强的必要条件;如糖皮质激素本身不引起血管平滑肌收缩,但却是去甲肾上腺素发挥收缩血管作用的前提。
第11章有氧工作能力1.最大摄氧量和乳酸阈都是反应人体有氧耐力的生理指标,试从生理学的角度分析它们的异同点。
答:(1)二者的相同点同最大摄氧量一样,乳酸阈也是反映有氧耐力的一个重要指标。
(2)二者的不同点①最大摄氧量是指人体在进行激烈运动中,心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧气量。
②乳酸阈是指当运动强度超过某一负荷时乳酸浓度急剧上升的开始点,是人体的代谢供能方式由有氧代谢为主开始向无氧代谢为主过渡的临界点,通常以血乳酸急剧增加的起始点(乳酸拐点)所对应的强度来表示。
③最大摄氧量反映人体在运动时所摄取的最大氧量,而乳酸阈则反映人体在递增负荷运动中血乳酸浓度没有急剧堆积时的最大摄氧量实际所利用的百分比,即最大摄氧量利用率(%Vo2max)。
其值越高,有氧工作能力越强;反之,有氧工作能力越低。
2.有氧耐力的生理学基础能否可以理解为是最大摄氧量生理机制?为什么?答:(1)人体有氧耐力取决于机体氧的运输系统功能、肌肉利用氧的能力、神经调节能力和能量供应特点等因素。
心肺功能是影响有氧耐力的中枢机制,而肌纤维类型的百分比组成及其骨骼肌的代谢特征是影响有氧耐力的外周机制。
①氧运输系统的功能a.肺的通气与换气机能影响人体吸氧能力:肺通气量越大,吸入体内的氧就越多,呼吸频率和呼吸深度影响肺通气量的变化。
运动时提高和掌握有效的呼吸动作,增强呼吸机能就能提高有氧耐力。
b.心脏的泵血功能与有氧耐力密切相关:心输出量受每搏输出量和心率的制约,而每搏输出量决定于心肌收缩力量和心室腔容积的大小。
c.红细胞的数量是影响有氧耐力的一个因素:血液中红细胞所含的血红蛋白,携带氧进行运输。
运动员血红蛋白含量假如下降10%,则往往引起运动成绩下降。
②骨骼肌的特征肌组织的有氧代谢机能影响有氧耐力。
肌肉内毛细血管网开放数量的增加,可使单位时间内肌肉血流量增加,血液可携带更多的氧供给肌肉。
优秀的耐力运动员慢肌纤维百分比高,肌红蛋白、线粒体和氧化酶活性高、毛细血管数量增加。