整数规划及分支定界法
- 格式:ppt
- 大小:421.00 KB
- 文档页数:16
第4章 整数规划判断:用分枝定界法求解一个极大化的整数规划问题,任何一个可行解的目标函数值是该问题目标函数值的下界;指派问题数学模型的形式同运输问题十分相似,故也可以用表上作用法求解;效率矩阵的任一行(或列)减去(或加上)任一常数,指派问题最优解不会受到影响; 匈牙利法只能用于平衡分配问题;对于极大化问题,匈牙利法不能直接求解。
整数规划问题解的目标函数值优于其相应的线性规划问题的解的目标函数。
用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解。
用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,在进行比较剪枝。
分配问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
分配问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
分配问题域运输问题的数学模型结构形式十分相似,故也可以用表上作业法求解。
隐枚举法也可以用来求解分配问题简答试述分枝定界法求解问题的主要思想。
试述隐枚举法的步骤。
试讲述割平面方法的基本原理. 试例举三种应该剪枝的情况。
计算题分枝定界法用分枝定界法求解下列整数规划问题12max Z x x =+1212129511414123,x x x x x x +≤-+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 32Z x x =+121212231429,x x x x x x +≤+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 2010Z x x =+1232312312324434323,,x x x x x x x x x x x ++≤≤+≤≥---0且为整数用分枝定界法求解下列整数规划问题12max 79Z x x =+121212136735,x x x x x x x +≤+≤≥-0,且为整数用分枝定界法求解下列整数规划问题123max 33Z x x x =++123231231231324432323,,,x x x x x x x x x x x x x ++≤≤+≤≥---0,且为整数用分枝定界法解下列整数规划问题:1212121212232478188..3219,0MaxZ x x x x x x s t x x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题1212121212250..6221,0MaxZ x x x x x x s t x x x x =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题12312121225231050..7228,0,MaxZ x x x x x s t x x x x x =-+-+≤⎧⎪-≤⎨⎪≥⎩为整数用分枝定界法解下列整数规划问题12312341234345272222..0,1,2,3,4,5,j MaxZ x x x x x x x x x x x s t x j x x =-+-⎧-+-+=⎪⎪⎪-++=⎨⎪≥=⎪⎪⎩为整数用分枝定界法求解下列整数规划模型12max 23z x x =+121257354936x x x x +≤+≤12,0x x ≥且为整数有如下整数规划问题12max z x x =+12129511414123x x x x +≤-+≤12,0x x ≥且为整数试用分枝定界法求其最优解。
基于分支定界法的整数规划问题研究与应用1. 引言1.1 整数规划概述整数规划是运筹学中的一种重要问题求解方法,它主要关注于在一组约束条件下,寻找使某个目标函数取得最优值的整数决策变量。
与线性规划相比,整数规划问题更为复杂和困难,因为整数规划要求决策变量取值必须为整数。
这使得整数规划问题在实际应用中更具挑战性。
整数规划可以广泛应用于资源分配、生产调度、网络设计等领域,例如在生产调度中,整数规划可以帮助厂商合理安排生产计划,最大限度地提高生产效率;在网络设计中,整数规划可以帮助网络规划者确定最优的网络拓扑结构,以实现网络资源最大化利用。
整数规划在实际问题中具有重要的应用价值。
为了解决整数规划问题,研究人员提出了各种求解方法,其中一种常用的方法就是分支定界法。
下面将介绍分支定界法的原理和步骤,以及其在整数规划中的应用实例和优缺点。
【2000字】1.2 分支定界法简介分支定界法是一种解决整数规划问题的有效方法,它可以帮助我们在有限的时间内找到最优解。
这种方法通过将问题分解为子问题并逐步缩小搜索范围来提高求解效率。
分支定界法的基本思想是通过逐步分支和缩小搜索范围来逼近最优解。
在每一步中,我们选择一个变量,并将其分支为两个子问题,一个子问题包含该变量的上界,另一个子问题包含该变量的下界。
然后,我们对这两个子问题进行求解,直到找到最优解或确定该子问题无解。
分支定界法的优点是可以确保找到最优解,因为它逐步缩小搜索范围直到找到最优解为止。
该方法在实际应用中具有较高的效率,可以解决许多复杂的整数规划问题。
分支定界法也存在一些缺点,例如在处理大规模问题时可能会遇到指数级的计算复杂性。
为了提高效率,我们需要不断优化算法,并结合其他启发式方法来提高求解速度。
分支定界法是一种强大的方法,可以应用于各种整数规划问题中。
通过不断改进和优化算法,我们可以进一步提高求解效率,实现更多实际应用场景中的最优解。
2. 正文2.1 分支定界法的原理分支定界法的原理是一种用于解决整数规划问题的有效方法。
最优化分支定界最优化问题是指在一组约束条件下,寻找某个或某组变量的值,使得目标函数达到最优(最大或最小)的问题。
这类问题在科学研究、工程技术和经济管理等领域中都有广泛的应用。
分支定界法(Branch and Bound)是一种求解最优化问题的经典算法,尤其适用于整数规划、混合整数规划以及组合优化问题。
以下是该方法的详细说明:1.基本思路(1)分支:将问题的可行解空间不断划分为更小的子集,这个过程称为“分支”。
每个子集代表原问题的一个子问题。
(2)定界:对每个子集(或子问题)计算一个目标函数的界(上界或下界),这称为“定界”。
对于最小化问题,通常会计算每个子集的下界;对于最大化问题,则会计算上界。
(3)剪枝:在每次分支后,通过比较子集的目标函数界和当前已知的最优解,可以判断某些子集不可能包含更优的解,因此这些子集可以被“剪枝”,即不再进一步考虑。
(4)迭代:通过不断重复分支、定界和剪枝的过程,直到找到最优解或确定最优解的范围。
2.优点(1)适用性广:分支定界法可以应用于各种类型的最优化问题,包括整数规划、混合整数规划和组合优化问题。
(2)求解效率高:通过有效的剪枝策略,可以大大减少需要探索的解空间,从而提高求解效率。
(3)可以找到全局最优解:与某些只能找到局部最优解的启发式算法不同,分支定界法可以保证找到全局最优解(在给定时间内)。
3.缺点(1)内存消耗大:由于需要存储大量的子问题和它们的界,分支定界法可能会消耗大量的内存空间。
(2)实现复杂:分支定界法的实现通常比较复杂,需要仔细设计分支策略、定界方法和剪枝策略。
(3)可能受问题特性影响:对于某些特定类型的问题,分支定界法可能不是最有效的求解方法。
例如,当问题的解空间非常复杂或难以有效划分时,分支定界法的效率可能会受到严重影响。
4.应用领域分支定界法被广泛应用于各种实际问题的求解中,如生产调度、物流配送、资源分配、网络设计等。
在这些领域中,通过合理地定义变量、约束条件和目标函数,可以将实际问题抽象为最优化问题,并利用分支定界法进行求解。
整数规划知识点总结一、整数规划基本概念整数规划是指决策变量的取值受到整数限制的线性规划问题。
数学形式可以表示为:\[\min c^Tx\]\[ s.t. Ax \leq b\]\[x\geq0 \]\[x_i \in \{0, 1, 2, ...\}\]其中,c为目标函数系数,x是决策变量,A是约束系数矩阵,b是约束条件的右端向量,决策变量x是整数。
当所有的决策变量都是整数时,称为纯粹整数规划(Pure Integer Programming)。
当部分决策变量为整数,部分为连续变量时,称为混合整数规划(Mixed Integer Programming, MIP)。
二、整数规划解法整数规划问题的求解可以采用分支定界法、割平面法、隐枚举法等不同方法。
下面将对常用的整数规划解法进行简要介绍。
1.分支定界法分支定界法是一种求整数规划解的有效方法,它通过对决策变量进行分支,将整数规划问题不断分解为子问题,然后采用线性规划方法求解子问题。
具体步骤如下:1)求解线性规划松弛问题,得到一个整数解。
2)若解为整数,则成为可行解,否则确定需要分支的决策变量,分为两个子问题。
3)对子问题继续重复上述过程,直到无法再分或求解出整数解为止。
2.割平面法割平面法是在分支定界法的基础上进行改进,它在每一次迭代求解线性规划松弛问题后,引入一些额外的不等式(割平面)来改进松弛问题的界。
这些割平面是通过分析整数规划问题的特性产生的,可以有效提高整数规划问题求解的效率。
3.隐枚举法隐枚举法是一种通过隐藏对决策变量的枚举,将整数规划问题转化为线性规划问题进行求解的方法。
该方法可以高效地求解整数规划问题,是一种常用的整数规划求解算法。
以上是整数规划常用的三种求解方法,通过不同的算法可以解决不同种类的整数规划问题。
三、整数规划应用领域整数规划在实际决策问题中有着广泛的应用,如生产计划、运输调度、项目投资、资源配置等诸多领域。
下面将对整数规划在不同应用领域的具体案例进行介绍。
运筹学中关于规划问题的常用解决方法运筹学是一门研究如何在有限资源下做出最优决策的学科。
在运筹学中,规划问题是一类常见的问题,它涉及到如何合理分配资源以达到特定的目标。
本文将介绍运筹学中关于规划问题的常用解决方法。
首先,线性规划是解决规划问题最常用的方法之一。
线性规划的目标是在一组线性约束条件下,找到使目标函数最大或最小的变量值。
线性规划的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z是要优化的目标函数,c₁, c₂, ..., cₙ是目标函数的系数,a₁₁,a₁₂, ..., aₙₙ是约束条件的系数,b₁, b₂, ..., bₙ是约束条件的常数,x₁, x₂, ..., xₙ是决策变量。
其次,整数规划是线性规划的一种扩展形式,它要求决策变量必须取整数值。
整数规划在实际问题中具有广泛的应用,例如生产调度、物流配送等。
整数规划的求解方法包括分支定界法、割平面法等。
分支定界法通过将整数规划问题划分成一系列子问题,并逐步求解,最终得到最优解。
割平面法则通过添加额外的线性约束条件来逐步逼近最优解。
除了线性规划和整数规划,规划问题还可以通过动态规划方法求解。
动态规划是一种将问题分解成子问题并逐步求解的方法。
它适用于具有重叠子问题和最优子结构性质的问题。
动态规划的核心思想是通过存储中间结果来避免重复计算,从而提高计算效率。
动态规划在求解最短路径、背包问题等方面具有广泛的应用。
此外,启发式算法是一类基于经验和直觉的求解方法,它通过不断搜索和优化来寻找问题的近似最优解。
启发式算法常用于求解复杂的规划问题,如旅行商问题、车辆路径问题等。
以下内容基本为转载内容:1. 模型整数规划的模型与线性规划基本相同,只是额外的添加了部分变量为整数的约束。
2. 求解步骤整数规划求解的基本框架是分支定界法(Branch and bound,BnB)。
首先去除整数约束得到“松弛模型”,使用线性规划的方法求解。
若有某个变量不是整数,在松弛模型上分别添加约束:x<=floor(A)和x>=ceil(A)然后再分别求解,这个过程叫做分支。
当节点求解结果中所有变量都是整数时,停止分支。
这样不断迭代,形成了一棵树。
定界,指的是叶子节点产生后,相当于给问题定了一个下界。
之后在求解过程中一旦某个节点的目标函数值小于这个下界,那就直接pass,不用再进行分支了;每次新产生叶子节点,则更新下界。
3. python算法实现import mathfrom scipy.optimize import linprogimport sysdef integerPro(c,A,b,Aeq,beq,t=1.0E-12):res=linprog(c,A_ub=A,b_ub=b,A_eq=Aeq,b_eq=beq)if(type(res.x)is float):#produces error codebestX=[sys.maxsize]*len(c)else:bestX=res.xbestVal=sum([x*y for x,y in zip(c,bestX)])if all(((x-math.floor(x))<t or(math.ceil(x)-x)<t)for x in bestX): return(bestVal,bestX)else:ind=[i for i,x in enumerate(bestX)if(x-math.floor(x))>t and (math.ceil(x)-x)>t][0]newCon1=[0]*len(A[0])newCon2=[0]*len(A[0])newCon1[ind]=-1newCon2[ind]=1newA1=A.copy()newA2=A.copy()newA1.append(newCon1)newA2.append(newCon2)newB1=b.copy()newB2=b.copy()newB1.append(-math.ceil(bestX[ind]))newB2.append(math.floor(bestX[ind]))r1=integerPro(c,newA1,newB1,Aeq,beq)r2=integerPro(c,newA2,newB2,Aeq,beq)if r1[0]<r2[0]:return r1else:return r2例子:输入c=[3,4,1]A=[[-1,-6,-2],[-2,0,0]]b=[-5,-3]Aeq=[[0,0,0]]beq= [0]print(integerPro(c,A,b,Aeq,beq))输出(8.0,array([2.,0., 2.]))其中8是目标函数值,2,0,2是3个整数变量的值。
分支定界法的主要思想和步骤
题目
简述分支定界法的思想。
答案解析
答:分支定界法是一种搜索与迭代的方法,选择不同的分支变量和子问题进行分支。
算法步骤
(1)求整数规划的松弛问题最优解。
(2)若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下一步。
(3)任意选一个非整数解的变量xi,在松弛问题中加上约束xi≤[xi]及xi≥[xi]+1组成两个新的松弛问题,称为分支。
新的松弛问题具有如下特征:当原问题是求最大值时,目标值是分支问题的上界;当原问题足求最小值时,目标值是分支问题的下界。
(4)检查所有分支的解及目标函数值,若某分支的解是整数并且目标函数值大于(max)等于其他分支的目标值,则将其他分支剪去不再计算,若还存在非整数解并且目标值大于( max)整数解的目标值,需要继续分支,再检查,直到得到最优解。