例1用分枝定界法求解下面的整数规划
- 格式:doc
- 大小:48.50 KB
- 文档页数:1
《运筹学》样卷参考答案(48课时)一、判断题(对的记√,错的记×,共10分,每小题2分)1.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;()y 说明在最优生产计划中第i种资源2.已知*y为线性规划的对偶问题的最优解,若*0i已完全耗尽;( ) 3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解、有无穷多最优解、无界解和无可行解;()4.求解整数规划是可以先不考虑变量的整数约束,而是先求解相应的线性规划问题,然后对求解结果中的非整数的变量凑整即得最优解。
()5.11个公司之间可能只有4个公司与偶数个公司有业务联系;()答案:1. T; 2. T; 3. F; 4. F; 5. F二、选择题(共15分,每小题3分)1.在利用图解法求解最大利润问题中中,通过各极点作与目标函数直线斜率相同的平行线,这些平行线称之为。
( )A.可行解B.可行域C.等利润线D.等成本线2.用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为。
( )A.0B.很大的正数C.很大的负数D.13.以下关系中,不是线性规划与其对偶问题的对应关系的是。
( )A.约束条件组的系数矩阵互为转置矩阵B.一个约束条件组的常数列为另一个目标函数的系数行向量C.两个约束条件组中的方程个数相等D.约束条件组的不等式反向4.需求量大于供应量的运输问题需要做的是。
( )A.虚设一个需求点B.删去一个供应点C.虚设一个供应点,取虚设供应量为恰当值D.令供应点到虚设的需求点的单位运费为05.对一个求目标函数最大的混合整数规划问题,以下命题中不正确的是。
()A.其线性规划松弛问题的最优解可能是该整数规划问题的最优解。
B.该问题可行解的个数一定是有限的;C.任一可行解的目标函数值不可能大于其线性规划松弛问题的目标函数值;D.该问题可行解中可能存在不取整数值的变量。
分支定界法和割平面法分支定界法和割平面法在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。
整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。
本文就适用于纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。
一、分支定界法在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。
对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。
而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。
所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。
分支定界法就是其中一个。
分枝定界法可用于解纯整数或混合的整数规划问题。
在二十世纪六十年代初由Land Doig和Dakin等人提出。
由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。
目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。
设有最大化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作z;而A的任意可行解的目标函数值将是z*的一个下界z。
分枝定界法就是将B的可行域分成子区域再求其最大值的方法。
逐步减小z和增大z,最终求到z*。
现用下例来说明:例1 求解下述整数规划 Maxz?40x1?90x2?9x1?7x2?56? ?7x1?20x2?70?x,x?0且为整数?12解(1)先不考虑整数限制,即解相应的线性规划B,得最优解为:x1?4.81,x2?1.82,z?356可见它不符合整数条件。
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。
用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。
习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。
⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。
⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。
2.2 将下列线性规划模型化为标准形式并列出初始单纯形表。
(1)123123123123123min 243221943414..524260,0,z x x x x x x x x x s t x x x x x x =++-++≤⎧⎪-++≥⎪⎨--=-⎪⎪≤≥⎩无约束 解:(1)令11333','",'x x x x x z z =-=-=-,则得到标准型为(其中M 为一个任意大的正数)12334567123341233561233712334567max '2'24'4''003'22'2''194'34'4''14..5'24'4''26',,','',,,,0z x x x x x x Mx Mx x x x x x x x x x x x s t x x x x x x x x x x x x x =-++-++--++-+=⎧⎪++--+=⎪⎨++-+=⎪⎪≥⎩初始单纯形表如表2-1所示:表2-1c j-22 4-4 0 0 -M -M θC B X B b 1'xx 2 3'x3''xx 4 x 5 x 6 x 7 0 x 4 19 3 2 2 -2 1 0 0 0 19/3 -M x 6 14 [ 4 ] 3 4 -4 0 -1 1 0 14/4 -Mx 7 265 2 4-40 0 0 1 26/5 -z-2+9M2+5M4+8M -4-8M-M2.3 用单纯形法求解下列线性规划问题。
(1)123123123123123max 2360210..220,,0z x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ (2) 1234123412341234min 52322347..2223,,,0z x x x x x x x x s t x x x x x x x x =-+++++≤⎧⎪+++≤⎨⎪≥⎩解:(1)最优解为**(15,5,0),25T x z ==。
运筹学习题库一、线性规划1.某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。
工厂每天可利用的工时为12个,可供应的原材料为15公斤。
1)试确定使总利润为最大的日生产计划和最大利润。
2)若由于原材料涨价,使得产品丙的单位利润比原来减少了2元,问原来的最优生产计划变否?若不变,说明为什么;若变,请求出新的最优生产计划和最优利润。
3)在保持现行最优基不变的情况下,若要增加一种资源量,应首先考虑增加哪种资源?为什么?单位资源增量所支付的费用是多少才合算?为什么?2.给出一线性规划问题如下:max z = 3x1 + x2x1 + x2≤4-x1 + x2≤26x1 + 2x2≤18x1,x2≥0试用对偶理论判断该问题是否存在以x1、x2和x3为基变量的最优解?3.用单纯形法求解某个目标函数为max,约束为≤形式,x4、x5为松弛变量的线性规划问题的最终表如下:试用改进单纯形法原理求该问题的数学模型。
4.给出一个线性规划问题如下:max z = x1 +2 x2 +3 x3x1 + 2x2 + 3x3≤84x1+ 5x3≤12x1,x2 ,x3 ≥0已知其对偶问题的最优解为Y* = (1,0 ),试用对偶理论求上述问题的最优解和最优值。
5.试用大M法求下述线性规划问题的最优解和最优值(不能用图解法):max z = 3x 1 – 3 x 2x1 + x2 ≥1 2x 1 + 3x 2 ≤6x 1,x 2 ≥06.已知一线性规划问题如下:max z = 5x 1 + 2 x 2 + 4 x 3 3 x 1 + x 2 + 2 x 3 ≤ 46 x 1 + 3 x 2 + 5 x 3 ≤ 10 x 1,x 2,x 3 ≥ 0试用松紧定理判断X = ( 0,0,2 )T 是否是该问题的最优解,若不是,说明为什么;若是, 请求出相应的目标函数值。
整数规划习题4-1某厂拟在A 、B 、C 、D 、E 五个城市中建立若干个配送中心,各处设配送中心都需要资金、人力、设备等,而这样的需求量及能提供的利润各处不同,有些点可能亏本,但却能得到贷款和人力等资源。
设数据已知,由下表所示。
厂方应作出4-2用分支定界法求解下列整数规划问题⎪⎩⎪⎨⎧≥≥+≤+⎪⎩⎪⎨⎧≥≥+≤+-+=+=且为整数且为整数)()(0,5427230,5021010m 2min 12121212121212121x x x x x x x x x x x x x x z ax x x z4-3用割平面法求解下列整数规划问题⎪⎩⎪⎨⎧≥≤+≤+⎪⎩⎪⎨⎧≥≥+≥++=+=且为整数且为整数)()(0,102920,1029232m 232min 12121212121212121x x x x x x x x x x x x x x z ax x x z 4-4用隐枚举法求解下列0-1规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤+≤+≤++≤-++-=1,0,,162444233max 3212232321321321x x x x x x x x x x x x x x x x z4-5安排4个人做4项不同的工作,每个人完成工作所需要的时间如下表所示,(1)应如何指派,可使总的时间最少?(2)如果表中的数据为创造的效益,应如何指派,使总效益最大?(3)如果在表中增加一个人(一行),完成A、B、C、D工作的时间分别为16、17、20、21天,这时应如何指派,使总时间最少?4-6对每题结论进行判断,如果结论错误请改正。
(1)整数规划的最优解是先求相应的线性规划的最优解然后取整得到。
(2)求最大值整数规划问题的目标函数值是各分支函数值的上界。
(3)求最小值整数规划问题的目标函数值是各分支函数值的上界。
(4)整数规划的可行解集合是离散型集合。
(5)0一1规划的变量有n个,则有2n个可行解。
(6)割平面约束是将可行域中一部分非整数解切割掉。