高等数学:11-9多重积分应用
- 格式:ppt
- 大小:1.05 MB
- 文档页数:12
高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。
(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。
(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。
解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。
应该填写:332R π。
(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。
应该填写:⎰⎰y yx y x f y 2d ),(d 10。
(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。
应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。
A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。
高等数学重庆大学版教材答案第一章:极限与连续1.1 极限的概念与性质1.2 极限存在准则及常用极限第二章:函数与导数2.1 函数的概念与性质2.2 一次函数与多项式函数2.3 指数函数与对数函数2.4 三角函数与反三角函数2.5 导数的概念及其几何意义第三章:微分学应用3.1 微分学中的中值定理3.2 泰勒公式与函数的凹凸性3.3 曲线的渐近线与曲率第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分公式及其应用4.3 定积分的概念与性质4.4 定积分的计算方法第五章:常微分方程5.1 常微分方程的基本概念与解法5.2 一阶线性常微分方程5.3 高阶常系数线性微分方程第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 多元函数的全微分与全导数第七章:多元函数积分学7.1 二重积分及其计算方法7.2 三重积分及其计算方法7.3 曲线与曲面的面积与曲线积分第八章:无穷级数与幂级数8.1 数项级数的概念与性质8.2 收敛级数判别法8.3 幂级数及其收敛半径第九章:向量代数与空间解析几何9.1 向量的概念与性质9.2 空间几何与平面方程第十章:连续性与一元函数微积分应用10.1 函数连续性与间断点10.2 一元函数微积分应用第十一章:二重积分与曲线积分应用11.1 二重积分应用11.2 曲线积分应用第十二章:无穷级数与多元函数微积分应用12.1 数项级数的应用12.2 多元函数微积分的应用总结:以上为高等数学重庆大学版教材的答案提纲。
希望这个提纲能够帮助你更好地学习和理解高等数学的知识。
在实际讲授过程中,还请参考教材详细内容和课堂教学,确保准确性和全面性。
祝你学习进步!。
高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。
本文将对重积分的相关概念、性质、计算方法等进行总结。
一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。
对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。
设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。
与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。
同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。
三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。
多重积分的应用和计算方法多重积分是高等数学中的一个重要分支,它的应用范围涵盖了众多学科领域。
多重积分的计算方法和应用十分重要,下面我们就来详细讲述多重积分的应用和计算方法。
一、多重积分的应用1.立体几何多重积分能够用来解决与立体几何相关的问题,如体积、质心、惯性矩、转移积分等问题。
例如,当我们要求一个不规则物体的体积时,就需要对该物体进行三重积分。
2.统计多重积分在统计中也有广泛应用,如求解双变量统计分布函数中的相关系数,以及用于分析双变量分布密度函数等问题。
3.物理学多重积分在物理学中的应用也十分广泛,例如计算含密度分布的碰撞情形、电场和磁场的建模等。
4.金融学多重积分在金融学中的应用主要集中在随机过程建模中,如模拟股票价格、债券价格等,解决了很多股票价格计算的问题。
二、多重积分的计算方法1.重积分的概念在高维空间中,重积分的概念是对于一个有限的函数f(x1,x2,...,xn),我们可以定义在一个n维矩形区域R上的积分,那么该积分的值就是重积分。
重积分可以看作是多个积分的组合,其中x1到xn表示积分变量,而dx1、dx2等则代表积分变量相应的微元。
这样,通过多个积分的嵌套计算,我们就能算出具体的重积分值。
2.变换积分公式变换积分公式是计算多重积分的重要工具。
它被用来处理一个积分区域的坐标系的变换。
假设F(u1,u2)是一个单变量函数,而(x,y)和(u,v)分别是两种坐标系中的坐标,那么对于某个区域R,它可以被写成一对(u,v)值的函数:x = x(u,v) y = y(u,v)在这种情况下,我们可以把在(x,y)坐标系下的积分转化为在(u,v)坐标系下的积分,具体而言,计算过程如下:$\int\int_Rf(x,y)dxdy = \int\int_Df(x(u,v),y(u,v))|J(u,v)|dudv$在这里,J(u,v)被称为Jacobi矩阵,它是变换的导数。
这个公式就是变换积分公式。