高数 定积分的应用
- 格式:ppt
- 大小:1.67 MB
- 文档页数:21
高数复习题6——定积分应用1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长. 3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;(2)求摆线一拱与x 轴所围图形的面积;(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积. 4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x = λ,x 轴所围成平面图形的面积,求λ。
5.求曲线x y sin =(π≤≤x 0)和x 轴所围图形绕y 轴旋转一周所成立体的体积. 6.设20π<<t (t 为参数),曲线x y sin =与三条直线0,2,===y t x t x 所围平面图形绕x 轴旋转一周所成的旋转体体积为)(t V ,求 t 的值使)(t V 取得最大值。
7.质点以速度 2sin )(t t t v =(米/秒)作直线运动,求质点从时间11=t 秒到时间π=2t秒内所经过的路程。
8.半圆形闸门半径为R (米),将其垂直放入水中,且直径与水面齐,设水密度1=ρ;设 坐标原点放在圆心,x 轴正向朝下,求闸门一侧所受的水压力。
9.一容器的边界曲面是由抛物线2x y =绕y 轴旋转而成的,其容积为π72)(3m ,容器中盛满水,问将水抽去π64)(3m 至少需作多少功.参考答案1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 解:设切点为),(00y x ,00001)(x y x x y =-=' 10-=y ,20e x = 所以切线方程为 x ee x e y 22211)(1-=---=,曲线与x 轴的交点为)0,(e面积22220111[(1ln )()]2ee e A x dx x x dx e e e e =-+---=-⎰⎰2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长.解:先求曲线的交点⎩⎨⎧+==θθcos 1cos 3r r 消r 得21cos =θ 所以3πθ±=面积2232031152[(1cos )(3cos )]224A d d πππθθθθπ=++=⎰⎰弧长2[]4l θθπ=+=+3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;222002sin 82tl a a dt a πππ====⎰⎰⎰(2)求摆线一拱与x 轴所围图形的面积;222220(1cos )3aA ydx a t dt a πππ==-=⎰⎰(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积.22233230(1cos )5aV y dx a t dt a πππππ==-=⎰⎰4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x =λ,x 轴所围成平面图形的面积,求λ。
三、平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如:对某一零件的长度进行n 次测量,每次测得的值为。
通常用算术平均值作为这个零件长度的近似值。
然而,有时还需要计算一个连续函数在区间上的一切值的平均值。
我们已经知道,速度为的物体作直线运动,它在时间间隔上所经过的路程为用去除路程s ,即得它在时间间隔上的平均速度,为一般地,设函数在区间上连续,则它在上的平均值,等于它在上的定积分除以区间的长度b-a ,即图 5-34这个公式叫做函数的平均值公式。
它可变形为它的几何解释是:以为底、为曲边的曲边梯形面积,等于高为的同底矩形的面积(见图5-33)图 5-33例6 求从O到T这段时间内自由落体的平均速度。
解:自由速度为。
所以要计算的平均速度(见图5-34)为例7 计算纯电阻电路中正弦交流电在一个周期内功率的平均值。
解设电阻为R,那么电路中R两端的电压为而功率因为交流电的周期为,所以在一个周期上,P的平均值为就是说,纯电阻电路中正弦交流电的平均功率等于电流和电压的峰值乘积的一半。
通常交流电器上标明的功率是平均功率。
四、定积分在经济上的应用举例定积分在经济活动中应用很广泛。
如,已知某经济函数的边际函数的条件下,求原经济函数的改变量时,就需用定积分来解决。
例8 设某工厂生产某产品,边际产量为时间t的函数,已知求从t=1到t=3这两个小时的总产量。
解:因为总产量是它的边际产量的原函数。
所以,从t=1到t=3这两小时的总产量是(千件)例9 已知生产某产品x件的边际收入是( 元/件)求生产此产品1000件时的总收入,平均收入,及生产1000件到2000件时所增加的收入和平均收入。
解:设总收入函数为,总产量为1000件时的总收入R(1000),为平均收入产量从1000件到2000件所增加的收入为,其平均收入为例10 设某产品的总成本C(单位:万元)的边际成本是产量x(单位:百台)的函数,;总收入(单位:万元)的边际收入是产量x的函数,求:1)产量由1百台增加到5百台总成本,总收入各增加多少?2)已知固定成本C(0)为1万元,分别求出总成本、总收入,总利润与产量的关系式。
大一高数定积分的应用知识点大一高数课程中,定积分是一个重要的概念和工具。
它在数学和其他领域中有着广泛的应用。
通过对定积分的学习和理解,我们可以更好地理解和应用高数的知识。
下面将介绍一些大一高数定积分的应用知识点。
一、定积分的定义和基本性质定积分的定义是通过极限的思想得出的。
在闭区间[a, b]上,将函数f(x)的每一个小区间[a, x]上的面积(可以是正数、负数或零)都加起来,这个和就是函数f(x)在闭区间[a, b]上的定积分,记作∫[a, b]f(x)dx。
定积分有以下的基本性质:1. 定积分的可加性:∫[a, b]f(x)dx + ∫[b, c]f(x)dx等于∫[a, c]f(x)dx。
2. 定积分的线性性质:若f(x)和g(x)在闭区间[a, b]上可积,则有∫[a, b](f(x) + g(x))dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
3. 定积分的估值定理:若f(x)在闭区间[a, b]上是连续的,则存在一个点c∈[a, b],使得∫[a, b]f(x)dx = f(c)(b - a)。
二、定积分的几何意义和物理意义定积分的几何意义是函数图像和x轴以及闭区间[a, b]所围成的图形的面积。
当函数图像在x轴上方时,定积分为正数;当函数图像在x轴下方时,定积分为负数;当函数图像与x轴相交时,定积分为零。
定积分的物理意义是函数图像和x轴所围成的部分的面积与某物理量的关系。
例如,若f(x)表示一个速度函数,那么∫[a, b]f(x)dx就表示从时间a到时间b内物体所走过的路程。
三、定积分的基本应用1. 函数曲线所围图形的面积计算:通过定积分可以求解函数曲线所围图形的面积,如矩形、三角形、梯形、圆形等。
例如,若要求解函数y = x^2在区间[0, 1]上的面积,可以计算∫[0, 1]x^2dx = [x^3/3]0^1 = 1/3。
2. 曲线的弧长计算:通过定积分可以求解曲线的弧长。
定积分及其应⽤定积分的概念与性质定积分问题实例曲边梯形的⾯积把区间分为n 份在闭区间内插⼊n-1个分点将区间分为n 份⼩区间记各个⼩区间⻓度为ΔXi近似替代在每个⼩区间内任意取⼀点,以该点函数值为⾼,⼩区间⻓度为宽的窄矩形⾯积近似替代第i 个曲边梯形⾯积求和取极限确保把整个闭区间分的⾜够细(注意:分割份数⾜够多不能保证误差⼀定变⼩,必须要分的够细)每个⼩区间区间⻓度⾜够⼩n →∞记λ= ΔXi 中最⼤值当λ→0刻画了区间的⽆限细分过程得结果曲边梯形⾯积A= λ→0时对∑(上标n ,下标i=1)f (ζ i )ΔXi 求极限单位产品的可变成本变化的总成本问题定积分定义条件:函数在闭区间内有界具体步骤:同曲边梯形⾯积求法记法:f (x )在闭区间[a ,b ]上的定积分(简称积分),记作∫(上b 下a )f (x )dx其中a 为积分下限,b 为积分上限按照区间形式时规定了a 与b 的⼤⼩关系,但是实际上积分上限不⼀定⼤于积分下限关于可积:f (x )在闭区间上定积分存在,说明f ;x )在闭区间可积在闭区间上连续则可积在闭区间有界且只有有限个间断点则可积注意定积分的⼤⼩只与被积函数和积分区间有关,与积分变量使⽤的符号⽆关(⽤x ⽤t 都⼀样)但若积分变量与函数中变量形式[如f (t )与x]不对应,则将函数看成常数处理∑上n 下i=1表示从1起⼀共到n (右端点);∑上n-1下i=0表示从o 起⼀共到n-1(左端点)已知f(x)在闭区间定积分存在,则积分值与积分区间划分、取点都⽆关,可以进⾏特殊分割与特殊取点将区间闭区间n 等分,即有f[a+(b-a )i/n](b-a )/n将闭区间特殊取值为[0,1]应⽤:⽤定积分表示和式极限从原式中提1/n 出来并在此基础上对原式变形定积分⼏何意义在闭区间上f (x )⼤于等于0表示曲边梯形⾯积⼩于等于0表示曲边梯形⾯积的负值有正有负表示各部分⾯积的代数和定积分性质积分上限等于积分下限时,定积分=0积分下限⼤于积分上限时,定积分等于积分上下限颠倒后定积分的相反数函数和差的定积分等于它们定积分的和差被积函数的常数因⼦可以提到积分号外⾯积分区间具有可加性(⽆论a ,b ,c 相对位置如何总是成⽴)被积函数相同时,若积分区间满⾜⼦⺟区间关系可以直接⽤积分区间相减在闭区间上函数恒等于1,其定积分等于闭区间⻓度引申:不等于1等于其他常数同理函数在闭区间上⼤于等于0,其定积分⼤于等于0推论在闭区间上⼀个函数⼤于等于另⼀个函数,则其定积分也⼤于另⼀个函数的定积分⼀个函数定积分的绝对值⼩于等于|该函数|的定积分M ,m 分别是函数在闭区间上的最⼤值和最⼩值,则m (b-a )⼩于等于该函数定积分⼩于等于M (b-a )其中a ⼩于b如果函数在闭区间连续,则在积分区间上⾄少存在⼀点ζ 使函数在积分区间上的定积分等于f (ζ )(b-a )⼏何:⾯积近似推论:f (ζ )=定积分/b-a 为函数在闭区间上的平均值⼏何:f (ζ )可看作是图中曲边梯形的平均⾼度求定积分⽅法定义法:和式极限⼏何法:函数的图像⽜顿莱布尼茨公式法:找原函数微积分基本公式积分上限函数(变上限积分函数)定义条件:函数在闭区间上连续记法性质定理1函数在闭区间连续,则它的积分上限函数在闭区间可导且导数为f (x )→即将积分上限直接代⼊f (对于变上限积分函数我们只知道求导)证明过程类举特殊的变上限积分上限还可以是关于积分变量的⼀个函数f[v(x)]v‘(x)变下限与变上限函数结果为相反数(变下限,先负号)⼀般特殊变限⼀般情况积分上下限都是关于积分变量的函数先将积分区间分为只变上限与只变下限的形式积分区间的可加性再按照特殊变上下限的⽅法进⾏原函数存在定理积分上限函数是f (x )在闭区间上的⼀个原函数⼏何意义表示[a ,x]上曲边梯形⾯积应⽤常与“0/0”型求极限使⽤洛必达法则结合能⽤洛必达先⽤洛必达∫下0上x xf (t )dt=x ∫下0上x f (t )dt⼀定要看清题⽬要求(如求导的变量是否是x ,不是x 才能把x 当作常数提出来)与分段函数利⽤积分区间的可加性拆积分区间与分段函数分段区间对应⽜顿莱布尼茨公式内容如果函数F (x )是连续函数f (x )在闭区间上的⼀个原函数,则它的定积分等于F (b )-F (a )证明积分上限函数和f (x )的原函数只相差⼀个常数(都是它的原函数)函数在闭区间连续则它的积分上限函数是它在此闭区间上的⼀个原函数再令x=a 得c=__再令x=b 并将c=__代⼊并把积分变量换成x 表明⼀个连续函数在闭区间上的定积分等于它的任⼀原函数在闭区间上的增量适⽤条件被积函数在积分区间上是连续的被积函数在积分区间上是分段连续且有界时把积分区间分为若⼲个⼦区间,使得被积函数在每个⼦区间上均连续定积分的换元积分法和分部积分法定积分的换元积分法定理函数f (x )在[a,b]连续,函数x= φ(t )满⾜φ(α)=a ,φ(β)=bφ(t )在[α, β](或两者调换顺序)上具有连续导数,且φ(t )值域属于[a,b]复合函数内层函数值域为外层函数的定义域则可把x= φ(t )直接代⼊(必要时换限)定积分换元公式使⽤注意正⽤为第⼆换元,逆⽤为凑微分换元必换限,凑微分不换限换元得出含新元函数不必再换为原元,只要把新元的积分上下限分别代⼊新元函数相减即可⼏个结论f (x )在关于原点对称的区间内连续该函数为奇函数则函数在该区间内的的定积分等于0该函数为偶函数则函数在该区间内的的定积分等于2倍函数在区间(该区间左/右端点与0)内的定积分证明⽅法积分区间可加性令x=-t 后代⼊最后结果⽤x 代替t 表示积分变量即可f (x )在[0,1]上连续f (sinx )在[0, π/2]上的定积分=f (cosx )在[0, π/2]上的定积分f (sinx )表示函数由sinx 构成直接⽤cosx 替换sinx记sinx 的n 次⽅在[0, π/2]上的定积分结论(分奇偶)xf (sinx )在[0, π]上的定积分= π/2乘f (sinx )在[0, π]上的定积分只需要判断x 所乘后⾯的那个函数可以写成f (sinx )的形式就可以⽤此结论后⾯那个函数并不是⾮要全部换成sinx 的形式,谁好算保留谁的形式设f (x )是周期为T 的周期函数f (x )在[a,a+T]上的定积分=f (x )在[0,T]上的定积分=f (x )在[-T/2,T/2]上的定积分f (x )在[a,a+nT]上的定积分等于n 倍f (x )在[0,T]上的定积分等于f (x )在[0,nT]上的定积分保证积分区间是T/nT 即可定积分的分部积分法同不定积分中分部积分法⼀致,只是需要带上积分区间定积分的应⽤定积分的元素法选取积分变量并明确变量范围近似得定积分平⾯图形的⾯积表示图形某⼀特征的形式不同时需要分类讨论(分积分变量在不同区间)善于⽤⼏何意义解题如根号下a ⽅-x ⽅极坐标系下的⾯积计算扇形的⾯积公式1/2 αr 平⽅1/2lr求体积求交⾯⽤什么切就把什么代进去。