高中物理碰撞习题
- 格式:docx
- 大小:127.95 KB
- 文档页数:5
高中生碰撞测试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第一定律,物体在不受外力作用时将保持()状态。
A. 静止B. 匀速直线运动C. 静止或匀速直线运动D. 变速运动答案:C2. 一个物体的动量是()。
A. 物体的质量与速度的乘积B. 物体的质量与加速度的乘积C. 物体的质量与位移的乘积D. 物体的质量与力的乘积答案:A3. 以下哪项是描述物体运动状态的物理量?()A. 质量B. 速度C. 密度D. 温度答案:B4. 一个物体从静止开始做匀加速直线运动,若初速度为零,加速度为a,则在时间t内,物体的位移s与时间t的关系是()。
A. s = 0.5at^2B. s = at^2C. s = atD. s = 2at答案:A5. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
若作用力增大到原来的两倍,物体的质量不变,则物体的加速度将()。
A. 增大到原来的两倍B. 减小到原来的一半C. 保持不变D. 无法确定答案:A6. 一个物体在水平面上做匀速直线运动,若摩擦力增大,则物体的运动状态将()。
A. 保持不变B. 速度增大C. 速度减小D. 停止运动答案:C7. 根据能量守恒定律,一个物体在没有外力作用的情况下,其机械能()。
A. 会增加B. 会减少C. 保持不变D. 无法确定答案:C8. 一个物体在竖直方向上做自由落体运动,其加速度是()。
A. 向上的B. 向下的C. 为零D. 无法确定答案:B9. 一个物体在水平面上做匀速圆周运动,其向心力的方向是()。
A. 指向圆心B. 指向圆外C. 与速度方向相同D. 与速度方向相反答案:A10. 根据牛顿第三定律,作用力和反作用力的大小()。
A. 相等B. 不相等C. 相等但方向相反D. 无法确定答案:C二、填空题(每题2分,共20分)1. 牛顿第一定律也被称为______定律。
答案:惯性2. 物体的动量等于其质量与______的乘积。
动量守恒定律的应用(碰撞)一、选择题1.质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?().A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v',且满足Mv=(M+m)v'D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv22.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移一时间图象(s-t图象)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为().A.1∶1 B.1∶2 C.1∶3 D.3∶13.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中.若子弹均留在木块中,则三木块下落的时间t A、t B、t C的关系是().A.t A<t B<t C B.t A>t B>t C C.t A=t C<t B D.t A=t B<t C4.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为().A.4 J B.8 J C.16 J D.32 J5.如图所示,有两个质量相同的小球A和B(大小不计),A球用细绳吊起,细绳长度等于悬点距地面的高度,B点静止放于悬点正下方的地面上.现将A球拉到距地面高度为h处由静止释放,摆动到最低点与B球碰撞后粘在起共同上摆,则它们升起的最大高度为().A .h /2B .hC .h /4D .h /26.在光滑水平面上,动能为0E 、动量的大小为0P 的小钢球l 与静止小钢球2发生碰撞.碰撞前后球l 的运动方向相反.将碰撞后球l 的动能和动量的大小分别记为1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有( ). A .1E <0E B .1P <0PC .2E >0ED .2P >2P7.甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是=5kg m/s P ⋅甲、=7kg m/s P ⋅乙,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10kg m/s ⋅。
碰撞与动量守恒例83:如图所示,位于光滑水平桌面上的小滑块A 和B 都可视作质点,质量相等。
B 与轻质弹簧相连。
设B 静止,A 以某一初速度向B 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( )A. A 的初动能B. A 的初动能的1/2C. A 的初动能的1/3D. A 的初动能的1/4练习83、如图所示,在光滑的水平面上放着质量不相等,大小相同的两个物块,开始物体乙静止,在乙上系有一个轻质弹簧。
物块甲以速度v 向乙运动。
甲与轻质弹簧接触后连在一起,继续在水平面上运动。
在运动过程中( )A .当两者速度相同的瞬间,弹簧一定压缩量最大B .当两者速度相同的瞬间,弹簧可能伸长最大C .当一物块静止的瞬间,另一物块的速度一定为vD .系统的机械能守恒,动量也守恒练习85、如图所示,在光滑的水平面上有一质量为25kg 的小车B ,上面放一个质量为15kg 的物体,物体与车间的滑动摩擦系数为0.2。
另有一辆质量为20kg 的小车A 以3m/s 的速度向前运动。
A 与B 相碰后连在一起,物体一直在B 车上滑动。
求:(1)当车与物体以相同的速度前进时的速度。
(2)物体在B 车上滑动的距离。
例86:如图所示的装置中,质量为1.99kg 的木块B 与水平桌面间的接触是光滑的,质量为10g 的子弹A 以103m/s 的速度沿水平方向射入木块后留在木块内,将弹簧压缩到最短,求弹性势能的最大值。
22.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求: A B 甲 乙 v 0 A B(1)弹簧被压缩到最短时木块A的速度;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.练习86、如图所示,两个质量都为M的木块A、B用轻质弹簧相连放在光滑的水平地面上,一颗质量为m的子弹以速度v射向A块并嵌在其中,求弹簧被压缩后的最大弹性势能。
一、选择题1. 两个物体发生碰撞,下列哪种情况下,碰撞是弹性碰撞?A. 两个物体的速度都变为零B. 两个物体的动能守恒C. 两个物体碰撞后仍保持相对静止D. 两个物体的速度方向发生改变但大小不变2. 下列哪个公式描述了动量守恒定律?A. F = maB. p = mvC. E = mc²D. Δp = FΔt3. 两个质量分别为m1和m2的物体发生完全非弹性碰撞,碰撞后它们的共同速度为v,则碰撞前两物体的速度分别为:A. v1 = m1v, v2 = m2vB. v1 = m2v, v2 = m1vC. v1 = (m1 + m2)v / m1, v2 = (m1 + m2)v / m2D. v1 = (m1 + m2)v / m2, v2 = (m1 + m2)v / m14. 下列哪种情况下,碰撞过程中动能不守恒?A. 弹性碰撞B. 完全非弹性碰撞C. 弹性碰撞和非弹性碰撞D. 碰撞过程中没有外力作用5. 两个质量分别为m1和m2的物体发生碰撞,碰撞前速度分别为v1和v2,碰撞后速度分别为v1'和v2',则动量守恒定律可以表示为:A. m1v1 + m2v2 = m1v1' + m2v2'B. m1v1 m2v2 = m1v1' m2v2'C. m1v1 + m2v2 = m1v1' m2v2'D. m1v1 m2v2 = m1v1' + m2v2'二、填空题1. 碰撞过程中,动量守恒定律的数学表达式为:______。
2. 弹性碰撞中,动能守恒定律的数学表达式为:______。
3. 完全非弹性碰撞中,两个物体的共同速度为______。
4. 碰撞过程中,如果两个物体的质量相等,则它们的速度变化量______。
5. 碰撞过程中,如果两个物体的速度方向相反,则它们的动量大小______。
三、计算题1. 两个质量分别为2kg和3kg的物体发生弹性碰撞,碰撞前速度分别为5m/s和3m/s,求碰撞后两个物体的速度。
第一章 动量守恒定律5 弹性碰撞和非弹性碰撞1.如图所示,相同A 、B 两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A 球紧靠竖直墙壁.现用半径相同的小球C 与B 相碰后粘在一起压缩弹簧,不计空气阻力,从C 与B 碰撞到弹簧压缩最短的过程中,下列说法正确的是( )A .B 、C 两个小球组成系统的动量不守恒、机械能不守恒B .A 、B 、C 三个小球组成系统的动量守恒、机械能守恒C .A 、B 、C 三个小球组成系统的动量不守恒、机械能守恒D .B 、C 两个小球组成系统的动量守恒、机械能不守恒2.甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示.已知甲的质量为1 kg ,则碰撞过程两物块损失的机械能为( )A .3 JB .4 JC .5 JD .6 J3.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E 0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,这个整体的动能为( )A .E 0B .2E 03C .E 03D .E 094.冰壶运动深受观众喜爱,图1为运动员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置可能是图中的()A B C D5.如图所示,在光滑水平面上,有A、B两个小球沿同一直线向右运动,若取向右为正方向,两球的动量分别是p A=5.0 kg·m/s,p B=7.0 kg·m/s.已知二者发生正碰,则碰后两球动量的增量Δp A和Δp B可能是()A.Δp A=-3.0 kg·m/s;Δp B=3.0 kg·m/sB.Δp A=3.0 kg·m/s;Δp B=3.0 kg·m/sC.Δp A=3.0 kg·m/s;Δp B=-3.0 kg·m/sD.Δp A=-10 kg·m/s;Δp B=10 kg·m/s6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则()A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶107.如图所示,某次比赛中运动员正在准备击球,设在运动员这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A=5 kg·m/s,花色球B静止,白色球A与花色球B发生碰撞后,花色球B的动量变为p B′=4 kg·m/s,则两球质量m A与m B 间的关系可能是()A .mB =m AB .m B =14m AC .m B =16m AD .m B =6m A8.(2024年济南期末)如图所示,质量为m 的薄板与直立轻弹簧的上端连接,弹簧下端固定在水平面上,O 为自然伸长位置.平衡时,弹簧的压缩量为x .一质量为m 的物块P 从距薄板正上方3x 的A 处自由落下,打在薄板上立刻与薄板一起向下运动,它们到达最低点后又向上运动,恰能回到O 点.若把物块P 换成物块Q ,仍从A 处自由落下,碰后二者仍然一起向下运动,且不粘连,又向上运动时物块Q 到达的最高点比O 点高x 2.不计空气阻力,物块Q 的质量为( )A .2mB .2mC .3mD .4m9.(2024年汕尾期末)在一起交通事故中,一辆货车追尾前面轿车致使两车嵌在一起滑行了19.6 m 才停下.事后交警通过调取轿车的行车记录仪发现被追尾前轿车的速度v 1=36 km/h.若两车在地面滑行时与地面间的动摩擦因数均为0.5,碰撞后两车的发动机均停止工作,轿车的质量m 1=1 t ,货车的质量m 2=3 t ,重力加速度g 取10 m/s 2.(1)求两车碰撞后开始滑行时的速度大小;(2)若两车碰撞时间极短,求碰撞前货车的速度v 2大小;(3)若两车碰撞时间持续0.1 s ,轿车驾驶员的质量为70 kg ,求撞击过程中,轿车驾驶员受到的汽车水平方向的平均作用力的大小和方向.答案解析1、【答案】A 【解析】 C 与B 相碰过程中,由于时间极短,位移为零,弹簧没有弹力,所以此C 与B 组成的系统动量守恒,但动能损失最大,所以机械能不守恒;C 与B 一起压缩弹簧过程中,C 与B 组成的系统受弹力作用,动量不守恒,机械能守恒.所以整个过程,C 与B 组成的系统动量不守恒,机械能不守恒,A 、B 、C 三个小球组成系统的动量不守恒、机械能不守恒,所以A 正确.2、【答案】A 【解析】设甲的质量为m ,乙的质量为M ,碰撞前甲、乙的速度大小分别为v 1和v 2,碰撞后甲、乙的速度大小分别为v 3和v 4,碰撞过程中动量守恒,则m v 1+M v 2=m v 3+M v 4,解得M =6 kg ,则碰撞过程两物块损失的机械能ΔE =12m v 21+12M v 22-12m v 23-12M v 24=3 J ,故A 正确,B 、C 、D 错误.3、【答案】C 【解析】由碰撞中动量守恒m v 0=3m v 1,得v 1=v 03,第1个物块具有的动能E 0=12m v 20,则整块的动能为E k ′=12×3m v 21=12×3m (v 03)2=13×(12m v 20)=E 03,故C 正确. 4、【答案】B 【解析】若两球不是对心碰撞,则两球可能在垂直于甲的初速度方向上均发生移位,但垂直于甲初速度方向上应保证动量为零,碰撞后在垂直于甲的初速度方向上两冰壶应向相反方向运动,由A 所示可知,两壶碰撞后向垂直于甲初速度方向的同侧滑动,不符合动量守恒定律,故A 错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,由图示可知,B 正确,C 、D 错误.5、【答案】A 【解析】根据碰撞过程动量守恒,如果Δp A =-3 kg·m/s 、Δp B =3 kg·m/s ,则碰后两球的动量分别为p A ′=2 kg·m/s 、p B ′=10 kg·m/s ,根据碰撞过程总动能不增加,是可能发生的,故A 正确.两球碰撞过程,系统的动量守恒,两球动量变化量应大小相等,方向相反,若Δp A =3 kg·m/s ,则Δp B =-3 kg·m/s ,B 选项违反了动量守恒定律,不可能,故B 错误.根据碰撞过程动量守恒定律,如果Δp A =3 kg·m/s 、Δp B =-3 kg·m/s ,所以碰后两球的动量分别为p A ′=8 kg·m/s 、p B ′=4 kg·m/s ,由题可知,碰撞后,两球的动量方向都与原来方向相同,A 的动量不可能沿原方向增大,与实际运动不符,故C 错误.如果Δp A =-10 kg·m/s 、Δp B =10 kg·m/s ,则碰后两球的动量分别为p A ′=-5 kg·m/s 、p B ′=17 kg·m/s ,可以看出,碰撞后A 的动能不变,而B 的动能增大,违反了能量守恒定律,故D 错误.6、【答案】A 【解析】两球碰撞过程,系统不受外力,故碰撞过程系统总动量守恒.同时考虑实际情况,碰撞前,后面的球速度大于前面球的速度.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s ,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s ,所以碰撞后A 球的动量是2 kg·m/s ,碰撞过程系统总动量守恒m A v A +m B v B =-m A v A ′+m B v B ′,所以碰撞后B 球的动量是10 kg·m/s ,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,A 正确.7、【答案】A 【解析】由动量守恒定律得p A +p B =p A ′+p B ′,解得p A ′=1 kg·m/s ,根据碰撞过程中总动能不增加,则有p 2A 2m A ≥p A ′22m A +p B ′22m B ,代入数据解得m B ≥23m A .碰后两球同向运动,白色球A 的速度不大于花色球B 的速度,则p A ′m A ≤p B ′m B ,解得m B ≤4m A ,综上可得23m A ≤m B ≤4m A ,A 正确.8、【答案】B 【解析】物块由A 点下落过程机械能守恒,由机械能守恒定律可得mg ·3x =12m v 20,解得碰前物块的速度v 0=6gx ,物块与钢板碰撞过程系统动量守恒,以向下为正方向,由动量守恒定律得m v 0=2m v 1,解得v 1=126gx ,碰撞后只有重力、弹力做功,机械能守恒,设弹性势能为E P ,由机械能守恒定律得E p +12·2m v 21=2mgx ,解得E p =12mgx .物块Q 下落过程机械能守恒,由机械能守恒定律得m ′g ·3x =12m ′v 20,解得v 0=6gx ,碰撞过程中动量守恒,以向下为正方向,由动量守恒定律得m ′v 0=(m +m ′)v 2,以后物和钢板一起压缩弹簧又回到O 点过程中机械能守恒,设回到O 点时速度为v 3,由机械能守恒定律得E p +12·(m +m ′)v 22=(m +m ′)gx +12·(m +m ′)v 23,在O 点物块与钢板分离,做竖直上抛运动,上升高度x 2=v 232g,联立解得m ′=2m ,故选B . 9、解:(1)两车碰撞后一起做匀减速直线运动,滑行位移s =19.6 m ,由牛顿第二定律得μ(m 1+m 2)g =(m 1+m 2)a , 由匀变速直线运动规律得s =12at 2,v =at , 解得v =14 m/s.(2)两车碰撞的过程动量守恒,碰前货车的速度为v 2,轿车的速度为v 1,则 m 1v 1+m 2v 2=(m 1+m 2)v ,解得v 2=463m/s ≈15.3 m/s. (3)碰撞过程中,对轿车驾驶员在水平方向上进行分析,根据动量定理,设前进方向为正方向,则有F Δt =m (v -v 1),解得F=2 800 N,方向与前进方向相同.。
《弹性碰撞》练习精选班姓名1.卢瑟福(诺贝尔物理奖得主)在一篇文章中写道:可以预言,当α粒子与氢原子相碰时,可使之迅速运动起来。
按正碰撞考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射粒子能量的64%。
试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。
2.一质量为m钢球静止在质量为M铁箱的光滑底面上,如图示。
CD长L,铁箱与地面间无摩擦。
铁箱被v时开始做匀速直线运动。
后来箱壁与钢球发生弹性碰撞。
问碰后再经过多长加速至时间钢球与BD壁相碰。
3.在一铅直面内有一光滑的轨道,轨道左边是光滑弧线,右边是足够长的水平直线。
现有质量分别为m A和m B的两个质点,B在水平轨道上静止,A在高h处自静止滑下,与B发生弹性碰撞,碰后A仍可返回到弧线的某一高度上,并再度滑下。
求A,B至少发生两次碰撞的条件。
4.如图所示,半径为R 的光滑圆形轨道固定在竖直平面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失.重力加速度为g 。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
(06年高考重庆卷第25题,20分)5.某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如题25图所示用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3……N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g取10 m/s 2)。
36 碰撞问题【核心考点提示】一、碰撞过程的分类1.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失. 弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2. 碰后两个小球的速度分别为:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1(1)若m 1≫m 2,v 1′≈v 1,v 2′≈2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去.(2)若m 1≪m 2,v 1′≈-v 1,v 2′≈0,表示m 1被反向以原速率弹回,而m 2仍静止.(3)若m 1=m 2,则有v 1′=0,v 2′=v 1,即碰撞后两球速度互换.2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为:12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 二、碰撞过程的制约通常有如下三种因素制约着碰撞过程.1.动量制约:即碰撞过程必须受到动量守恒定律的制约;2.动能制约:即碰撞过程,碰撞双方的总动能不会增加;3.运动制约:即碰撞过程还将受到运动的合理性要求的制约.比如,某物体匀速运动,被后面物体追上并碰撞后,其运动速度只会增大而不会减小.再比如,碰撞后,后面的物体速度不能超过前面的物体.【训练】(多选)如图1,两个物体1和2在光滑水平面上以相同动能相向运动,它们的质量分别为m 1和m2,且m1< m2.经一段时间两物体相碰撞并粘在一起.碰撞后()A.两物体将向左运动B.两物体将向右运动C.两物体组成的系统损失能量最小D.两物体组成的系统损失能量最大【解析】根据p2=2mE k,结合m1<m2,知p1<p2,故系统总动量向左,根据动量守恒知碰后两物体将向左运动,所以A正确,B错误;由题意知两物体属于完全非弹性碰撞,损失动能最大,所以C错误,D正确.【答案】AD如图所示,A、B两小球在光滑水平面上分别以动量p1=4 kg·m/s和p2=6 kg·m/s(向右为参考正方向)做匀速直线运动,则在A球追上B球并与之碰撞的过程中,两小球的动量变化量Δp1和Δp2可能分别为()A.-2 kg·m/s, 3 kg·m/sB.-8 kg·m/s, 8 kg·m/sC.1 kg·m/s, -1 kg·m/sD.-2 kg·m/s, 2 kg·m/s【解析】由于碰撞过程中,动量守恒,两小球动量变化大小相等,方向相反,因此A错误;因为碰撞的过程中动能不增加.若Δp1和Δp2分别为-8 kg·m/s, 8 kg·m/s,则p1′=-4 kg·m/s,p2′=14 kg·m/s,根据E k=p22m知相撞过程中动能增加,B错误;两球碰撞的过程中,B球的动量增加,Δp2为正值,A球的动量减小,Δp1为负值,故C错误.变化量分别为-2 kg·m/s,2 kg·m/s,符合动量守恒、动能不增加以及实际的规律,故D正确.【答案】D【江西师范大学附属中学2017届高三上学期期中考试】甲、乙两球在光滑的水平面上,沿同一直线同一方向运动,它们的动量分别为p甲=10kg·m/s,p乙=14kg·m/s,已知甲的速度大于乙的速度,当甲追上乙发生碰撞后,乙球的动量变为20kg·m/s,则甲、乙两球的质量m甲:m乙的关系可能是()A.3:10B.1:10C.1:4D.1:6【答案】AC【解析】因为碰撞前,甲球速度大于乙球速度,则有p pm m甲乙乙甲>,得到57m pm p=甲甲乙乙<;根据动量守恒得:p甲+p乙=p甲′+p乙′,代入解得p甲′=4kg•m/s.根据碰撞过程总动能不增加,得到:2'22'22222p pmpm m mp+≥+甲甲乙乙乙乙甲甲代入解得:717mm≤甲乙;碰撞后两球同向运动,则甲的速度不大于乙的速度,应有:p pm m''≤甲乙乙甲代入解得:15mm≥甲乙;综合有:71517mm≤≤甲乙.故AC正确,BD错误.故选AC.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动【解析】取向右为正方向,根据动量守恒:m·2v0-2mv0=mv A+2mv B,知系统总动量为零,所以碰后总动量也为零,即A、B的运动方向一定相反,所以D正确,A、B、C错误.【答案】D(2013·江苏)水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示(注:原题中用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm,碰撞后相邻两位置之间的长度约为0.8 cm),据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的()A.30%B.50%C.70% D.90%【解析】 用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm ,碰撞后相邻两位置之间的长度约为0.8 cm ,则碰后与碰前速度比为v ′v =0.8 1.4=47,则碰撞过程中系统损失的动能约占碰撞前动能的12mv 2-122m v ′212mv 2=1-2×(v ′v )2=1-2×(47)2≈30%. 【答案】A如图所示,一个半径R =1.00 m 的粗糙14圆弧轨道,固定在竖直平面内,其下端切线是水平的,距地面高度h =1.25 m .在轨道末端放有质量m B =0.30 kg 的小球B (视为质点),B 左侧装有微型传感器,另一质量m A =0.10 kg 的小球A (也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6 N ,A 与B 发生正碰,碰后B 小球水平飞出,落到地面时的水平位移x =0.80 m ,不计空气阻力,重力加速度取g =10 m/s 2.求:(1)小球A 在碰前克服摩擦力所做的功;(2)A 与B 碰撞过程中,系统损失的机械能.【解析】(1)在最低点,对A 球由牛顿第二定律有F A -m A g =m A v A 2R得v A =4.00 m/s在A 下落过程中,由动能定理有:m A gR -W f =12m A v A 2 A 球在碰前克服摩擦力所做的功W f =0.20 J.(2)碰后B 球做平抛运动,在水平方向有x =v B ′t在竖直方向有h =12gt 2 联立以上两式可得碰后B 的速度v B ′=1.6 m/s对A 、B 碰撞过程,由动量守恒定律有m A v A =m A v A ′+m B v B ′碰后A 球的速度v A ′=-0.80 m/s ,负号表示碰后A 球运动方向向左由能量守恒得,碰撞过程中系统损失的机械能:ΔE 损=12mA v A 2-12m A v A ′2-12m B v B ′2故ΔE 损=0.384 J在A 与B 碰撞的过程中,系统损失的机械能为0.384 J.【答案】(1)0.20 J (2)0.384 J(2014·广东)如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .【解析】(1)P 1、P 2碰撞过程,动量守恒mv 1=2mv ①解得v =v 12=3 m/s ② 碰撞损失的动能ΔE =12mv 21-12(2m )v 2③ 解得ΔE =9 J ④(2)由于P 与挡板的碰撞为弹性碰撞.故P 在A →B →C →B (B ′)→A (A ′)等效为如图所示的匀减速运动.设P 在A →B →C →B (B ′)→A (A ′)段加速度大小为a ,由运动学规律,得μ(2m )g =2ma a =μg =0.1×10 m/s 2=1 m/s 2⑤P 返回经过B 时:3L =vt -12at 2⑥ 由①⑤⑥式,解得v =3L +12at 2t由于2 s≤t ≤4 s ,代入上式解得v 的取值范围5 m/s≤v ≤7 m/s ⑦所以v 1的取值范围10 m/s≤v 1≤14 m/s ⑧P 向左经过A (即图的A ′)时的速度v 2,则v 22-v 2=-2a ·4L ⑨ 将⑦代入⑨可知,当v =5 m/s 时,P 不能到达A ;当v =7 m/s 时,v 2=17 m/s所以v 2的取值范围v 2≤17 m/s ,所以当v 2=17 m/s 时,P 向左经过A 点时有最大动能E =12(2m )v 22=17 J 【答案】(1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J。
弹性碰撞和非弹性碰撞课后篇巩固提升必备知识基础练1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞。
已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定,由动量守恒定律得3m ·v-mv=0+mv',所以v'=2v 。
碰前总动能E k =12×3m ·v 2+12mv 2=2mv 2,碰后总动能E k '=12mv'2=2mv 2,E k =E k ',所以A 项正确。
2.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图像如图所示。
由图可知,物体A 、B 的质量之比为( ) A.1∶1 B.1∶2 C.1∶3 D.3∶1v A =4 m/s,v B =0,碰后v A '=v B '=1 m/s,由动量守恒可知m A v A +0=m A v A '+m B v B ',解得m B =3m A 。
故选项C 正确。
3.(2020甘肃武威第六中学期末)如图所示,在光滑的水平面上有一质量为1 kg 的小球以1 m/s 的速度向前运动,与质量为3 kg 的静止木块发生碰撞,假设碰撞后木块的速度是v 木=1 m/s,则( )A.v 木=1 m/s 这一假设是合理的,碰撞后球的速度为v 球=-2 m/sB.v 木=1 m/s 这一假设是合理的,碰撞后小球被弹回来C.v 木=1 m/s 这一假设是不合理的,因而这种情况不可能发生D.v 木=1 m/s 这一假设是可能发生的,但由于题给条件不足,v 球的大小不能确定v 木=1 m/s,则由动量守恒定律可知m 1v 0=m 1v 球+m 2v 木,解得v 球=-2 m/s,碰前动能E 1=12m 1v 02=0.5 J,碰后动能E 2=12m 1v 球2+12m 2v 木2=3.5 J >E 1,则假设不合理,这种情况不可能发生,故选项C 正确,A 、B 、D 错误。
物理碰撞运动试题及答案一、选择题1. 在完全弹性碰撞中,以下哪项是正确的?A. 动能不守恒B. 动量守恒C. 机械能不守恒D. 动量不守恒答案:B2. 两个物体发生碰撞后,如果它们的总动量守恒,则碰撞是:A. 完全非弹性碰撞B. 完全弹性碰撞C. 非完全弹性碰撞D. 弹性碰撞答案:B3. 一个质量为m的物体以速度v0撞击静止的墙壁,反弹回来的速度大小为v0/2,碰撞过程中:A. 动量守恒B. 动能不守恒C. 动量不守恒D. 动能守恒答案:A二、填空题4. 在碰撞过程中,如果两个物体的质量相等,且碰撞后以相同的速度运动,则碰撞是________。
答案:完全非弹性碰撞5. 一个质量为2kg的物体以10m/s的速度向东运动,与一个质量为3kg的物体以5m/s的速度向西运动发生碰撞,如果碰撞是完全弹性的,碰撞后两个物体的速度大小分别为________和________。
答案:5m/s;10m/s三、计算题6. 一辆质量为1500kg的汽车以30m/s的速度向北行驶,与一辆质量为2000kg的汽车以20m/s的速度向南行驶发生碰撞,两车碰撞后粘在一起以共同速度向东运动。
求碰撞后两车的共同速度。
答案:首先,根据动量守恒定律,碰撞前后总动量不变。
设碰撞后两车的共同速度为v,方向向东。
则有:(1500kg * 30m/s) - (2000kg * 20m/s) = (1500kg + 2000kg) * v解得:v = -5m/s由于速度为负,表示方向与初始方向相反,即两车碰撞后向东运动,速度为5m/s。
7. 一个质量为m的物体以速度v0向东运动,与一个质量为2m的物体以速度v0/2向西运动发生完全弹性碰撞。
求碰撞后两个物体的速度。
答案:设碰撞后物体m的速度为v1,物体2m的速度为v2。
根据动量守恒和动能守恒,我们有:mv0 = mv1 + 2mv2(1/2)mv0^2 = (1/2)mv1^2 + (1/2)(2m)v2^2解这两个方程,我们得到:v1 = 2v0/3v2 = v0/3四、简答题8. 描述完全弹性碰撞和完全非弹性碰撞的区别。
动量守恒定律应用(碰撞)授课内容:例题1、在光滑的水平面上有A、B两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A=5㎏·m/s,p B=7㎏·m/s,如图所示。
若两球发生正碰,则碰后两球的动量增量Δp A、Δp B可能是( )A、Δp A=3㎏·m/s,Δp B=3㎏·m/sB、Δp A=-3㎏·m/s,Δp B=3㎏·m/sC、Δp A=3㎏·m/s,Δp B=-3㎏·m/sD、Δp A=-10㎏·m/s,△p B=10㎏·m/s图一例题2、质量相同的三个小球,在光滑水平面上以相同的速度运动,分别与原来静止的三个小球A、B、C、相碰(a碰A,b碰B,c碰C).碰后a球继续沿原来方向运动;b球静止;c球被反弹而向后运动。
这时A、B、C三球中动量最大的是( )A、A球B、B球C、C球D、条件不足,无法判断例题3、在一条直线上相同运动的甲、乙两个小球,它们的动能相等,已知甲球的质量大于乙球的质量。
它们正碰后可能发生的情况是( )A、甲球停下,乙球反向运动B、甲球反向运动,乙球停下C、甲、乙两球都反向运动D、甲、乙两球都反向运动,且动能仍相等例题4、在光滑水平面上,动能为E0、动量的大小为p0的小钢球l与静止小钢球2发生碰撞.碰撞前后球l的运动方向相反。
将碰撞后球l的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有( )A、E1<E0B、p1<p0C、E2>E0D、p2>p0例题5、在光滑的水平导轨上有A、B两球,球A追卜并与球B正碰,碰前两球动量分别为p A=5㎏·m/s,p B=7㎏·m/s,碰后球B的动量p ’B=10㎏·m/s,则两球质量m A、m B的关系可能是( )A、m B=m AB、m B=2m AC、m B=4m AD、m B=6m A例题6、质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B发生正碰,碰撞后,A球的动能变为原来的1/9,那么碰撞后B球的速度大小可能是( )A、13v B、23v C、49v D、89v例题7、如图所示,运动的球A在光滑水平面上与一个原来静止的球B 发生弹性碰撞,A、B质量关系如何,可以实现使B球获得(1)最大的动能;(2)最大的速度;(3)最大的动量。
高考物理《碰撞问题》真题练习含答案1.如图,在光滑水平面上,一质量为100 g 的A 球,以2 m/s 的速度向右运动,与质量为200 g 大小相同的静止B 球发生对心碰撞,撞后B 球的速度大小为1.2 m/s ,取A 球初速度方向为正方向,下列说法正确的是( )A .该碰撞为弹性碰撞B .该碰撞为完全非弹性碰撞C .碰撞前后A 球的动量变化为-1.6 kg·m/sD .碰撞前后A 球的动量变化为-0.24 kg·m/s答案:D解析:以A 球初速度方向为正方向,碰撞过程根据动量守恒得m A v 0=m A v A +m B v B ,解得A 球碰后的速度为v A =-0.4 m/s ,碰撞前后A 球的动量变化为Δp =m A v A -m A v 0=0.1×(-0.4) kg·m/s -0.1×2 kg·m/s =-0.24 kg·m/s ,C 错误,D 正确;碰撞前系统的机械能为E 1=12m A v 20 =12 ×0.1×22 J =0.2 J ,碰撞后系统的机械能为E 2=12 m A v 2A +12 m B v 2B =12×0.1×0.42 J +12×0.2×1.22 J =0.152 J ,由于E 2<E 1,且碰后A 、B 速度并不相同,则该碰撞不是弹性碰撞,也不是完全非弹性碰撞,A 、B 错误.2.[2024·辽宁省沈阳市期中考试]在某次台球比赛中,质量均为m 、材料相同的白球和黑球静止在水平台球桌面上,某时刻一青少年瞬击白球后,白球与一静止的黑球发生了对心碰撞,碰撞前后两球的位置标记如图所示,A 、B 分别为碰前瞬间白球、黑球所在位置,C 、D 分别为碰撞后白球、黑球停止的位置.则由图可知白、黑两球碰撞过程中损失的动能与碰前时刻白球动能的比值为( )A .12B .23C .49D .59答案:C解析:令碰后白球的位移为3x 0,则黑球碰后位移为12x 0,碰撞过程,根据动量守恒定律有m v 0=m v 1+m v 2,碰撞后两球做匀减速直线运动,利用逆向思维,根据速度与位移关系有v 21 =2μg ·3x 0,v 22 =2μg ·12x 0,白、黑两球碰撞过程中损失的动能ΔE k =12 m v 20 -12m v 21 -12 m v 22 ,碰前时刻白球动能E k0=12 m v 20 ,解得ΔE k ΔE k0 =49,C 正确. 3.[2024·北京市顺义区期中考试]如图所示,两物块A 、B 质量分别为m 、2m ,与水平地面的动摩擦因数分别为2μ、μ,其间用一轻弹簧连接.初始时弹簧处于原长状态,使A 、B 两物块同时获得一个方向相反,大小分别为v 1、v 2的水平速度,弹簧再次恢复原长时两物块的速度恰好同时为零.关于这一运动过程,下列说法正确的是( )A .两物块A 、B 及弹簧组成的系统动量不守恒B .两物块A 、B 及弹簧组成的系统机械能守恒C .两物块A 、B 初速度的大小关系为v 1=v 2D .两物块A 、B 运动的路程之比为2∶1答案:D解析:分析可知,物块A 、B 的质量分别为m 、2m ,与地面间的动摩擦因数分别为2μ、μ,因此在滑动过程中,两物块所受的摩擦力大小都等于2μmg ,且方向相反,由此可知系统所受合外力为零,系统动量守恒,A 错误;在系统运动过程中要克服摩擦力做功,系统的机械能转化为内能,系统机械能不守恒,B 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,解得v 1=2v 2,C 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,设A 、B 的路程分别为s 1、s 2,则有m s 1t -2m s 2t=0,解得s 1∶s 2=2∶1,D 正确.4.随着科幻电影《流浪地球》的热映,“引力弹弓效应”进入了公众的视野.“引力弹弓效应”是指在太空运动的探测器,借助行星的引力来改变自己的速度.为了分析这个过程,可以提出以下两种模式:探测器分别从行星运动的反方向或同方向接近行星,分别因相互作用改变了速度.如图所示,以太阳为参考系,设行星运动的速度为u ,探测器的初速度大小为v 0,在图示的两种情况下,探测器在远离行星后速度大小分别为v 1和v 2.探测器和行星虽然没有发生直接的碰撞,但是在行星的运动方向上,其运动规律可以与两个质量不同的钢球在同一条直线上发生的弹性碰撞规律作类比.那么下列判断中正确的是( )A .v 1>v 0B .v 1=v 0C .v 2>v 0D .v 2=v 0答案:A解析:根据题意,设行星的质量为M ,探测器的质量为m ,当探测器从行星的反方向接近行星时(题中左图),再设向左为正方向,根据动量守恒和能量守恒得-m v 0+Mu =Mu ′+m v 1.12 m v 20 +12 Mu 2=12 Mu ′2+12m v 21 ,整理得v 1-v 0=u +u ′,所以v 1>v 0,A 正确,B 错误;同理,当探测器从行星的同方向接近行星时(题中右图),再设向左为正方向,根据动量守恒和能量守恒得m v 0+Mu =Mu ″-m v 2,12 m v 20 +12 Mu 2=12 Mu ″2+12m v 22 ,整理得v 0-v 2=u +u ″,所以v 2<v 0,C 、D 错误.5.如图所示,质量为M 的滑块静止在光滑水平地面上,其左侧是四分之一光滑圆弧,左端底部恰好与地面相切.两小球的质量分别为m 1=2 kg 、m 2=3 kg ,m 1的初速度为v 0,m 2保持静止.已知m 1与m 2发生弹性正碰,要使m 1与m 2发生两次碰撞,则M 可能为( )A .2 kgB .3 kgC .5 kgD .6 kg答案:D解析:m 1与m 2发生第一次弹性碰撞后,设小球m 1与m 2的速度分别为v 1、v 2,则由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,系统机械能守恒,有12 m 1v 20 =12 m 1v 21 +12m 2v 22 ,解得v 1=m 1-m 2m 1+m 2 v 0,v 2=2m 1m 1+m 2v 0;进入四分之一圆弧轨道M ,当m 2离开圆弧轨道时,设m 2的速度为v ′2,根据动量守恒和机械能守恒得v ′2=m 2-M m 2+Mv 2,要使m 1与m 2发生两次碰撞,则v ′2<0,即m >m 2,且|v ′2|>|v 1|,联立解得M >5 kg ,D 正确.6.[2024·浙江省宁波金兰教有合作组织联考]有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L ,已知他自身的质量为m ,忽略船运动过程中水对它的阻力,则可测得船的质量为( )A .m (L -d )dB .m (L +d )dC .m (L +d )LD .mL d答案:A解析:设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人和船的相对位移为L ,人从船尾走到船头所用时间为t ,则v =d t ,v ′=L -d t,人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,A 正确. 7.如图所示,平板小车A 放在光滑水平面上,长度L =1 m ,质量m A =1.99 kg ,其上表面距地面的高度h =0.8 m .滑块B (可视为质点)质量m B =1 kg ,静置在平板小车的右端,A 、B 间的动摩擦因数μ=0.1.现有mC =0.01 kg 的子弹以v 0=400 m/s 速度向右击中小车A 并留在其中,且击中时间极短,g 取10 m/s 2.求:(1)子弹C 击中平板小车A 后的瞬间,A 速度多大?(2)B 落地瞬间,平板小车左端与滑块B 的水平距离x 多大?答案:(1)2 m/s (2)0.4 m解析:(1)子弹C 击中小车A 后并留在其中,则A 与C 共速,速度为v 1,以v 0为正方向,根据动量守恒有m C v 0=(m C +m A )v 1,得v 1=2 m/s(2)设A 与B 分离时的速度分别是v 2、v 3,对A 、B 、C 组成的系统分析,由动量守恒和动能定理得(m A +m C )v 1=(m A +m C )v 2+m B v 3-μm B gL =12 (m A +m C )v 22 +12 m B v 23 -12(m A +m C )v 21 解得v 2=53 m/s ,v 3=23m/s 或v 2=1 m/s ,v 3=2 m/s(舍去,因为A 的速度不能小于B 的速度)B 从A 飞出以v 3做平抛运动,则h =12gt 2 得t =0.4 sA 以v 2向右做匀速直线运动,则当B 落地时,它们的相对位移x =(v 2-v 3)t =0.4 m8.[2024·河北省唐山市一中联盟联考]如图所示,光滑水平面上有一质量M =1.98 kg 的小车,小车上表面有一半径为R =1 m 的14光滑圆弧轨道,与水平轨道在B 点相切,B 点右侧粗糙,小车的最右端D 点竖直固定轻质弹簧片CD .一个质量m =2 kg 的小球置于车的B 点,车与小球均处于静止状态,有一质量m 0=20 g 的子弹,以速度v 0=800 m/s 击中小车并停留在车中,设子弹击中小车的过程时间极短,已知小球与弹簧片碰撞时无机械能损失,BD 之间距离为0.3 m ,小球与水平轨道间的动摩擦因数μ=0.5,g 取10 m/s 2.求:(1)子弹击中小车后的瞬间,小车的速度;(2)小球再次返回圆弧轨道最低点时,小球的速度大小;(3)小球最终相对于B 点的距离.答案:(1)8 m/s (2)8 m/s (3)0.2 m解析:(1)取向右为正方向,子弹打小车过程,子弹和小车系统动量守恒m 0v 0=(m 0+M )v解得v =8 m/s(2)子弹、小车和小球构成的系统动量守恒(m 0+M )v =(m 0+M )v 1+m v 2子弹、小车和小球构成的系统机械能守恒12 (m 0+M )v 2=12 (m 0+M )v 21 +12m v 22 联立可得v 1=0 v 2=8 m/s(3)小球最终状态是三者共速时(m 0+M )v =(m 0+m +M )v 3损失的机械能12 (m 0+M )v 2-12(m 0+m +M )v 23 =μmgs 联立可得s =3.2 m所以相对于B 点的距离是x =s -0.3×10 m =0.2 m9.[2024·江苏省宿迁市月考]如图所示,滑块A 、B 、C 位于光滑水平面上,已知A 的质量m A =1 kg ,B 的质量m B =m C =2 kg.滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v 0=3 m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用,直至分开未与C 相撞.整个过程弹簧没有超过弹性限度,求:(1)弹簧被压缩到最短时,B 物体的速度大小;(2)弹簧给滑块B 的冲量;(3)滑块A 的动能最小时,弹簧的弹性势能.答案:(1)1 m/s (2)4 N·s ,方向向右(3)2.25 J解析:(1)对AB 系统,AB 速度相等时,弹簧被压缩到最短.取向右为正方向,根据动量守恒定律可得m A v 0=(m A +m B )v 1代入数据解得v 1=1 m/s(2)在弹簧作用的过程中,B 一直加速,B 与弹簧分开后,B 的速度最大,取向右为正方向,根据动量守恒定律可得m A v 0=m A v A +m B v B根据机械能守恒定律可得12 m A v 20 =12 m A v 2A +12m B v 2B 联立解得v B =2 m/s对B 根据动量定理可得I =m B v B -0=2×2 N·s -0=4 N·s方向向右;(3)滑块A 的动能最小时速度为零,取向右为正方向,根据动量守恒定律可得m A v 0=m B v ′B 代入数据解得v ′B =1.5 m/s根据功能关系可得E p =12 m A v 20 -12m B v ′2B 代入数据解得E p =2.25 J .。
第十六章动量守恒定律第4节碰撞习题精选一、选择题(1-9单选,10-13多选)1.光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量M可以取不同的数值.现使a以某一速度向b运动,此后a与b发生弹性碰撞,则()A.当M=m时,碰撞后b的速度最大B.当M=m时,碰撞后b的动能最大C.当M>m时,M越小,则碰撞后b的速度越小D.当M<m时,M越大,则碰撞后b的动量越小2.关于散射,下列说法正确的是( )A.散射就是乱反射,毫无规律可言B.散射中没有对心碰撞C.散射时仍遵守动量守恒定律D.散射时不遵守动量守恒定律3.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E 0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,这个整体的动能为( )A.E0B.C.D.4.在冰壶世锦赛上中国队以8∶6战胜瑞典队,收获了第一个世锦赛冠军.队长王冰玉在最后一投中,将质量为19 kg的冰壶推出,运动一段时间后以0.4 m/s的速度正碰静止的瑞典队冰壶,然后中国队冰壶以0.1 m/s的速度继续向前滑向大本营中心.若两冰壶质量相等,则下列判断正确的是()A.瑞典队冰壶的速度为0.3 m/s,两冰壶之间的碰撞是弹性碰撞B.瑞典队冰壶的速度为0.3 m/s,两冰壶之间的碰撞是非弹性碰撞C.瑞典队冰壶的速度为0.5 m/s,两冰壶之间的碰撞是弹性碰撞D.瑞典队冰壶的速度为0.5 m/s,两冰壶之间的碰撞是非弹性碰撞5.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从摩擦可以忽略的坡道顶端由静止滑下,进入光滑水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的物块B相连,弹簧处于原长时,B恰好位于滑道的末端O点,A与B碰撞时间极短,碰撞后粘合在一起共同压缩弹簧至最短后被锁定,重力加速度为g,那么( )A.运动过程中A和B组成的系统机械能守恒B.运动过程中A和B组成的系统动量守恒C.A物块与B碰撞前的速度大小为D.A物块与B碰撞后的速度大小为6.如图所示,木块A、B、C置于光滑的水平面上,B和C之间用一轻质弹簧相连接,整个装置处于静止状态.现给A一初速度,使其沿B、C连线向B运动,随后与B相碰并粘在一起,则下列说法正确的是()A.A与B碰撞过程,二者组成的系统动量守恒,机械能守恒B.A与B碰撞过程,二者组成的系统动量守恒,机械能不守恒C.A与B一起压缩弹簧的过程,A、B、C及弹簧组成的系统动量不守恒,机械能守恒D.A与B一起压缩弹簧的过程,A、B、C及弹簧组成的系统动量守恒,机械能不守恒7.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E 0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,则最后这个整体的动能为()A.E0B.C.D.8.如图所示,细线上端固定于O点上,其下端系一小球,静止时细线长为L.现将细线和小球拉至图中实线位置,此时细线与竖直方向的夹角为θ=60°,并在小球原来所在的最低点放置一质量相同的泥球,然后使悬挂的小球从实线位置由静止释放,它运动到最低点时与泥球碰撞并合为一体,它们一起摆动中可达到的最大高度是()9.质量为m的小球A以水平初速度v0与原来静止的光滑水平面上的质量为3m的小球B发生正碰,已知碰撞过程中A球的动能减少了75%,则碰撞后B球的动能可能是( )A.mB.mC.mD.m10.(多选)质量为m、速度为v的A球跟质量为3m、静止的B球发生正碰,碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度可能为()A.0.6vB.0.4vC.0.3vD.0.2v11. (多选)如图,质量为M的物体P静止在光滑水平面上,另有一质量为m的物体Q以水平速度v正对P滑动,则它们碰撞后( )A.若m<M,则Q物体一定被弹回B.若m>M,则Q物体不可能静止C.Q物体不可能继续向前运动D.若相碰后两物体分离,则之后它们不可能再相碰12.(多选)动能相同的A、B两球(m A>m B)在光滑的水平面上相向运动,当两球相碰后,其中一球停止运动,则可判定()A.碰撞前A球的速度小于B球的速度B.碰撞前A球的动量大于B球的动量C.碰撞前后A球的动量变化量大小大于B球的动量变化量大小D.碰撞后A球的速度一定为零,B球朝反方向运动13.(多选)质量相等的A、B两球在光滑水平面上沿同一直线向同一方向运动,A球的动量是7kg·m/s,B球的动量是5kg·m/s,A球追上B球发生碰撞,则碰撞后A、B两球的动量可能为()A.p'A=8kg·m/s,p'B=4kg·m/sB.p'A=6kg·m/s,p'B=6kg·m/sC.p'A=5kg·m/s,p'B=7kg·m/sD.p'A=-2kg·m/s,p'B=14kg·m/s二、计算题。
高中物理选修1弹性碰撞和非弹性碰撞选择题专项训练姓名:__________ 班级:__________考号:__________一、选择题(共15题)1、 A、B两物体在光滑水平地面上沿一直线相向而行,A质量为5 kg,速度大小为10 m/s,B质量为2 kg,速度大小为5 m/s,两者相碰后,A沿原方向运动,速度大小为4 m/s,则B 的速度大小为()A.10m/s B.5m/s C.6m/s D.12m/s2、如图所示,在光滑的水平桌面上有体积相同的两个小球A、B,质量分别为m=0.1kg和M=0.3kg,两球中间夹着一根压缩的轻弹簧,原来处于静止状态,同时放开A、B球和弹簧,已知A球脱离弹簧的速度为6m/s,接着A球进入与水平面相切,半径为0.5m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道竖直的直径,,下列说法正确的是A.弹簧弹开过程,弹力对A的冲量大于对B的冲量B.A球脱离弹簧时B球获得的速度大小为2m/sC.A球从P点运动到Q点过程中所受合外力的冲量大小为1N·sD.若半圆轨道半径改为0.9m,则A球不能到达Q点3、甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。
已知甲的质量为1kg,则碰撞过程两物块损失的机械能为()A.3 J B.4 J C.5 J D.6 J4、如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长l=1.5 m,现有质量m=0.2 kg可视为质点的物块,以水平向右的速度v0从左端滑上小车,最后在车面上某处与2小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,则A.物块滑上小车后,滑块和小车构成的系统动量守恒B.物块滑上小车后,滑块和小车构成的系统机械能守恒C.若v0=2m/s,则物块在车面上滑行的时间为0.24 sD.若要保证物块不从小车右端滑出,则v0不得大于5m/s5、如图,长为L、质量为M的木板静置在光滑的水平面上,在木板上放置一质量为m的物块,物块与木板之间的动摩擦因数为μ.物块以v0从木板的左端向右滑动,若木板固定不动时,物块恰好能从木板的右端滑下.若木板不固定时,下列叙述正确的是()A.物块不能从木板的右端滑下B.对系统来说产生的热量Q=μmgLC.经过,物块与木板便保持相对静止D.摩擦力对木板所做的功等于物块克服摩擦力所做的功6、如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升.下列说法正确的是()A.弹簧被压缩时所具有的最大弹性势能为mghB.弹簧被压缩时所具有的最大弹性势能为C.B能达到的最大高度为D.B能达到的最大高度为7、如图所示,与轻弹簧相连的物体A停放在光滑的水平面上。
高中物理碰撞反冲试题及答案一、选择题1. 两个物体发生完全弹性碰撞后,以下哪项描述是正确的?A. 碰撞前后两物体的总动能不变B. 碰撞前后两物体的总动量不变C. 碰撞后两物体的速度相同D. 碰撞后两物体的动能之和等于碰撞前2. 一个质量为m的物体以速度v向右运动,与一个静止的物体发生碰撞。
如果碰撞后两物体粘在一起,求碰撞后两物体的共同速度。
二、计算题1. 一个质量为2kg的物体A以10m/s的速度向东运动,与一个质量为3kg的物体B以5m/s的速度向西运动发生碰撞。
如果碰撞是完全非弹性的,求碰撞后两物体的共同速度。
2. 一个质量为5kg的物体从静止开始自由下落,落在地面上后反弹。
如果物体与地面接触的时间是0.2秒,求物体反弹后的速度大小。
三、简答题1. 请简述动量守恒定律在碰撞问题中的应用。
2. 完全非弹性碰撞和完全弹性碰撞的区别是什么?答案一、选择题1. 正确答案:A和B解析:完全弹性碰撞中,碰撞前后两物体的总动能不变,且总动量也不变。
选项C和D描述的不是完全弹性碰撞的特性。
2. 答案:共同速度为 \(m \times v / (m + m')\),其中 \(m'\) 是静止物体的质量。
二、计算题1. 答案:共同速度为0解析:完全非弹性碰撞后,两物体粘在一起,因此它们的共同速度为0。
2. 答案:反弹后的速度大小为 \( \sqrt{2gh} \),其中 \( h \) 是物体下落的高度,\( g \) 是重力加速度。
三、简答题1. 动量守恒定律在碰撞问题中的应用是:在一个封闭系统中,如果没有外力作用,系统内各物体的总动量在碰撞前后保持不变。
2. 完全非弹性碰撞和完全弹性碰撞的区别在于:- 完全非弹性碰撞:碰撞后两物体粘在一起,动能损失最大,动量守恒。
- 完全弹性碰撞:碰撞后两物体分离,动能没有损失,动量守恒且动能守恒。
结束语:通过以上试题及答案,我们可以看到动量守恒定律在碰撞问题中的重要性以及不同类型的碰撞对物体速度和动能的影响。
物理弹性碰撞测试题及答案一、选择题1. 在弹性碰撞中,以下哪项守恒?A. 动能B. 动量C. 能量D. 势能答案:B2. 两个小球在光滑水平面上发生碰撞,若两球的质量分别为 \( m_1 \) 和 \( m_2 \),速度分别为 \( v_1 \) 和 \( v_2 \),在碰撞过程中,以下哪个物理量不守恒?A. 总动量B. 总动能C. 机械能D. 总能量答案:B(如果是完全弹性碰撞,总动能也守恒)3. 弹性碰撞的一个特征是碰撞前后系统的动能总和不变,这种碰撞称为:A. 完全非弹性碰撞B. 完全弹性碰撞C. 非弹性碰撞D. 弹性形变碰撞答案:B二、计算题4. 一个质量为 \( 2 \) kg的物体以 \( 10 \) m/s 的速度与另一个静止的物体发生弹性碰撞。
如果碰撞后第一个物体的速度变为 \( 6 \) m/s,求第二个物体的质量。
解:设第二个物体的质量为 \( m \),由于是弹性碰撞,动量守恒,有:\[ 2 \text{ kg} \times 10 \text{ m/s} = 2 \text{ kg}\times 6 \text{ m/s} + m \times v \]其中 \( v \) 是第二个物体碰撞后的速度。
由于动量守恒,我们可以得到:\[ m \times v = 2 \text{ kg} \times (10 \text{ m/s} - 6\text{ m/s}) \]\[ m \times v = 8 \text{ kg} \cdot \text{m/s} \]由于能量守恒,我们可以得到:\[ \frac{1}{2} \times 2 \text{ kg} \times (10\text{ m/s})^2 = \frac{1}{2} \times 2 \text{ kg} \times (6\text{ m/s})^2 + \frac{1}{2} \times m \times v^2 \]解这个方程,我们可以得到 \( m = 0.5 \) kg。
高中物理撞车练习题一、选择题1. 在一次交通事故中,甲车与乙车发生正碰,下列关于碰撞前后速度的说法,正确的是:A. 甲车和乙车的速度都减小B. 甲车和乙车的速度都增大C. 甲车的速度减小,乙车的速度增大D. 甲车的速度增大,乙车的速度减小2. 两辆汽车在平直公路上相向而行,发生碰撞后,若两车均未发生反弹,则下列说法正确的是:A. 碰撞前两车的速度相等B. 碰撞后两车的速度相等C. 碰撞前后两车的动能相等D. 碰撞前后两车的动量相等3. 下列关于弹性碰撞和非弹性碰撞的说法,正确的是:A. 弹性碰撞过程中,动能和动量都守恒B. 非弹性碰撞过程中,动能和动量都不守恒C. 弹性碰撞过程中,动能守恒,动量不守恒D. 非弹性碰撞过程中,动能不守恒,动量守恒二、填空题1. 在一次完全弹性碰撞中,甲车的质量为m1,速度为v1,乙车的质量为m2,速度为v2。
碰撞后,甲车的速度为____,乙车的速度为____。
2. 两辆汽车发生碰撞,碰撞前甲车的速度为v1,乙车的速度为v2,碰撞后甲车的速度为v1',乙车的速度为v2'。
根据动量守恒定律,有____。
3. 在一次交通事故中,一辆质量为m的汽车以速度v撞上墙壁,假设碰撞过程中汽车与墙壁的作用时间为t,则汽车受到的平均作用力为____。
三、计算题1. 一辆质量为m1的汽车以速度v1行驶,与一辆质量为m2的静止汽车发生完全弹性碰撞。
求碰撞后两车的速度。
2. 一辆质量为m的汽车以速度v在水平路面上行驶,突然发现前方有一障碍物,紧急刹车。
已知刹车过程中汽车的加速度为a,求汽车在停止前所行驶的距离。
3. 两辆汽车在平直公路上相向而行,发生碰撞后,甲车的速度变为原来的一半,乙车的速度变为原来的两倍。
已知甲车的质量为m1,乙车的质量为m2,求碰撞前后两车的速度。
四、判断题1. 在碰撞过程中,如果两车的质量相等,那么它们在碰撞后的速度一定会互换。
()2. 碰撞前后,系统的总动能总是守恒的。
物理碰撞试题及答案1. 两个质量分别为 \( m_1 \) 和 \( m_2 \) 的小球在光滑水平面上发生完全弹性碰撞,碰撞前 \( m_1 \) 的速度为 \( v_1 \),\( m_2 \) 的速度为 \( v_2 \)。
碰撞后 \( m_1 \) 和 \( m_2 \) 的速度分别是多少?答案:根据动量守恒和能量守恒,碰撞后的速度 \( v_1' \) 和\( v_2' \) 可以通过以下公式计算:\[ v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2} \]\[ v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2} \]2. 一个质量为 \( m \) 的小球从高度 \( h \) 处自由下落,与地面碰撞后反弹,反弹高度为 \( h' \)。
若碰撞是完全非弹性的,求反弹后小球的速度。
答案:完全非弹性碰撞意味着小球与地面碰撞后粘在一起,因此反弹后的速度为零。
3. 一辆质量为 \( M \) 的汽车以速度 \( V \) 与一辆静止的质量为\( m \) 的汽车发生碰撞,两车碰撞后速度相同。
求碰撞后两车的速度。
答案:根据动量守恒定律,碰撞后两车的速度 \( v \) 可以通过以下公式计算:\[ v = \frac{MV}{M + m} \]4. 一颗质量为 \( m \) 的子弹以速度 \( v \) 射入一块静止的木块中,木块的质量为 \( M \)。
如果子弹和木块在碰撞后一起移动,求碰撞后它们的共同速度。
答案:根据动量守恒定律,碰撞后子弹和木块的共同速度 \( v' \)可以通过以下公式计算:\[ v' = \frac{mv}{m + M} \]5. 一颗质量为 \( m \) 的小球以速度 \( v \) 沿着光滑水平面运动,与一个质量为 \( M \) 的静止小球发生碰撞。
物理中的碰撞试题及答案一、选择题1. 在完全弹性碰撞中,下列哪个量是守恒的?A. 动量B. 动能C. 能量D. 速度答案:A2. 两个物体发生非弹性碰撞后,下列哪个量不守恒?A. 动量B. 动能C. 质量D. 能量答案:B3. 如果两个物体的质量相等,且以相同的速度相向而行并发生完全非弹性碰撞,它们的最终速度是多少?A. 0B. 原速度的一半C. 原速度D. 原速度的两倍答案:A二、填空题4. 在完全非弹性碰撞中,两个物体碰撞后会以______速度一起运动。
答案:相同5. 动量守恒定律表明,在没有外力作用的系统中,系统的总动量在碰撞前后______。
答案:不变三、简答题6. 描述完全弹性碰撞和完全非弹性碰撞的区别。
答案:完全弹性碰撞中,物体碰撞后动能守恒,而完全非弹性碰撞中,物体碰撞后动能不守恒,部分动能转化为其他形式的能量。
7. 什么是动量守恒定律?请举例说明。
答案:动量守恒定律是指在一个封闭系统中,如果没有外力作用,系统的总动量将保持不变。
例如,当一个滑冰运动员将一个静止的球推向另一个静止的球时,两个球碰撞后,总动量保持不变。
四、计算题8. 一辆质量为1000kg的汽车以20m/s的速度向北行驶,与一辆质量为500kg的汽车以30m/s的速度向南行驶相撞。
如果碰撞是完全非弹性的,请计算两车碰撞后的速度。
答案:首先计算总动量:1000kg * 20m/s - 500kg * 30m/s = -5000kg*m/s。
然后,两车碰撞后总质量为1500kg。
因此,碰撞后的速度为 -5000kg*m/s / 1500kg = -33.33m/s(向南)。
9. 一个质量为2kg的球以10m/s的速度向东运动,与一个质量为4kg的静止球发生完全弹性碰撞,请计算碰撞后两个球的速度。
答案:设向东为正方向,根据动量守恒定律,2kg * 10m/s = 2kg *v1 + 4kg * v2。
根据动能守恒定律,0.5 * 2kg * (10m/s)^2 = 0.5* 2kg * v1^2 + 0.5 * 4kg * v2^2。
《弹性碰撞》练习精选
班姓名
1.卢瑟福(诺贝尔物理奖得主)在一篇文章中写道:可以预言,当α粒子与氢原子相碰时,可使之迅速运动起来。
按正碰撞考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射粒子能量的64%。
试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。
2.一质量为m钢球静止在质量为M铁箱的光滑底面上,如图示。
CD长L,铁箱与地面间无摩擦。
铁箱被v时开始做匀速直线运动。
后来箱壁与钢球发生弹性碰撞。
问碰后再经过多长
加速至
时间钢球与BD壁相碰。
3.在一铅直面内有一光滑的轨道,轨道左边是光滑弧线,右边是足够长的水平直线。
现有质量分别为m A和m B的两个质点,B在水平轨道上静止,A在高h处自静止滑下,与B发生弹性碰撞,碰后A仍可返回到弧线的某一高度上,并再度滑下。
求A,B至少发生两次碰撞的条件。
4.如图所示,半径为R 的光滑圆形轨道固定在竖直平面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为
R 4
1
,碰撞中无机械能损失.重力加速度为g 。
试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
(06年高考重庆卷第25题,20分)
5.某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如题25图所示用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3……N ,球的质量依次递减,每球质量与其相邻左球质量之比为k (k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g
取10 m/s 2
)。
(1)设与n +1号球碰撞前,n 号球的速度为v n ,求n +1号球碰撞后的速度。
(2)若N =5,在1号球向左拉高h 的情况下,要使5号球碰撞后升高16h (16 h 小于绳长)问k 值为多少?(3) 第(2)问的条件下,悬挂哪个球的绳最容易断,为什么?(07年高考重庆卷第25题,20分)
A
B O
R
《<弹性碰撞>试题精选》讲评
主讲:杨得发 校对:高双
1.讲解:设α粒子的质量为m 4,氢原子的质量为m ;
α
粒子的初速度为0v ,氢原子的初速度为零。
正碰后,α粒
子的速度为1v ,氢原子的速度为2v 。
由动量守恒和动能守恒可得:
21044mv mv mv +=-----------------------○
1 22
21202
1421421mv mv mv +=----------------○2 解得:0
0261442v .v m
m m v =+⋅=-------------○
3 入射α粒子的能量:20
42
1v )m (
氢原子碰后的能量:20
612
1)v .(m
则:64042
16121
202
0.v )m ()v .(m =-----------------○
4 原命题得证。
点评:请务必牢记弹性碰撞的双守恒方程(动量守恒和动能守恒)和双结论(0
2
1211v m m m m v +-=,02
11
22v m m m v +=)。
2.讲解:箱壁AC 与钢球发生弹性碰撞,动量守恒、动能守恒:
210mv Mv Mv +=-------------------○
1 22
21202
12121mv Mv Mv +=----------------○2 解得:0
1v m
M m M v +-=-------------------------○3 02
2v m
M M v +=------------------------○
4 设箱向前运动s 米后,钢球再次与箱壁BD 相碰,则有:
t v s 1=----------------------------------○5 t v L s 2=+------------------------------○6 解得:0
v L t =-----------------------------○
7 点评:若m M <,你会求解吗?
3.解:A 下滑的过程只有重力做功,机械能守恒:
gh m v m A
A =201---------------------------○
1 解得:gh v 20=
------------------------○
2 A 与B 发生完全弹性碰撞,研究对象为A 和B 组成的系统,动量守恒、动能守恒:
B B A A A v m v m v m +=0---------------○
3 22202
12121B
B A A A v m v m v m +=----------○4 解得:0
v m m m m v B
A B A A +-=--------------○
5 02v m m m v B
A A
B
+=
--------------○
6 A 返回某高度又滑下,仍满足机械能守恒,返回后的速度仍为
'v A ,且其大小0
v m m m m v 'v
B
A A
B A A
+-=
-=--------○7
只要B A v 'v >就能再碰,即:0
02v m m m v m m m m B A A B A A B +>+----○
8 解得:A B
m m 3>。
点评:机械能守恒的条件是:只有重力、弹簧的弹力作功。
动量守恒的条件是:系统不受外力或所受外力之和为零。
4.(06年高考重庆卷第25题,20分)
讲解:(1)由于碰撞中无机械能损失,根据机械能守恒有:
mgR mgR mgR β4
141+=
-----------○
1 解得:β=3。
(2)由于碰撞后A 、B 球能达到的最大高度均为R 4
1,且
碰撞中无机械能损失,所以第一次碰撞刚结束时小球A 一定反向运动.
设碰前小球A 的速度大小为v ,以水平向右为正方向,第一次碰撞刚结束时小球A 、B 的速度大小分别为1v 、2v .
碰前:22
1mv mgR =-----------------○
2 碰后:21
2
14mv R mg =----------------○
3 222
14mv R mg
ββ=-------------------○4 碰撞作用瞬间系统动量守恒:
21)(mv v m mv β+-=----------------○
5
222211201'2
1'2121v m v m v m +=。
○3由这两式解出的结论:02
1211'v m m m m v +-=
,021122'v m m m v +=。
○4
机械能守恒定律:在只有重力(弹簧的弹力)做功的条件下,动能和势能相互转化,但机械能的总量保持不变,即12
E E =。
○
5圆周运动的牛顿第二定律:r
mv F 2
=
向心力。
同学们学习时应达到本题的难题要求。