高中物理 碰撞问题
- 格式:docx
- 大小:14.34 KB
- 文档页数:2
高中物理碰撞问题的理想模型【摘要】高中物理中的碰撞问题一直是学生们所关注的重要内容。
本文将探讨物理碰撞问题的理想模型,包括碰撞的基本概念、动量守恒定律、动能守恒定律、不同类型碰撞的模型以及实际应用举例。
通过深入理解碰撞问题,我们可以更好地理解碰撞的规律和特点,为实际问题提供解决思路。
理想模型的建立对于深入研究碰撞问题至关重要,它可以帮助我们更好地分析和解决现实生活中的碰撞情况。
通过本文的学习,读者可以对碰撞问题有更深入的认识,同时也可以学会如何应用理论知识解决实际问题,为未来的学习和工作打下坚实的基础。
【关键词】碰撞问题、物理、高中、模型、动量守恒、动能守恒、碰撞类型、实际应用、重要性、解决思路、理想模型1. 引言1.1 介绍物理碰撞问题物理碰撞是研究物体之间相互作用的重要问题之一,它广泛应用于工程、科学和技术领域。
碰撞问题涉及到物体的相互碰撞过程,包括碰撞前后的状态变化和动能转化等。
在实际生活和工作中,我们经常会遇到各种碰撞现象,比如交通事故、运动中的碰撞、球类比赛中的碰撞等。
了解物理碰撞问题可以帮助我们更好地理解和分析这些现象,从而提高事故预防和解决问题的能力。
物理碰撞问题的研究不仅能够帮助我们解释和理解现象,还可以应用于工程设计和科学研究中。
通过研究碰撞问题,我们可以设计更安全和高效的交通工具、改善工程结构的稳定性,甚至用于天体物理学中对星球碰撞的模拟研究。
对物理碰撞问题的深入研究具有十分重要的意义,对于推动科学技术的发展和提高人类生活质量都具有积极的作用。
1.2 重要性和应用碰撞问题在物理学中占据着重要的地位,它不仅是物理学中的基础概念,也在我们的日常生活和工程领域中有着广泛的应用。
物理碰撞问题是研究物体之间相互作用的过程,通过对碰撞过程的研究可以深入了解物体运动的规律和性质。
1. 碰撞是物理学中的基础概念之一,它可以帮助我们理解物体之间的相互作用过程。
通过研究碰撞问题,可以揭示动量和能量守恒的原理,从而推导出一系列重要的物理定律和方程。
高中物理中的碰撞问题分析碰撞是物体之间相互作用的一个重要过程,也是高中物理中的一个重要内容。
本文将从碰撞的定义、碰撞的类型、碰撞实验、碰撞定律等方面进行分析和讨论。
一、碰撞的定义碰撞指的是物体之间相互接触并产生作用力的过程。
在碰撞过程中,物体的形态、速度、动能等物理量可能发生变化。
二、碰撞的类型碰撞可以分为弹性碰撞和非弹性碰撞两种类型。
1. 弹性碰撞在弹性碰撞中,碰撞物体之间的动能转化是完全弹性的,即在碰撞前后物体的总动能保持不变。
在碰撞中没有能量损失或转化为其他形式的能量。
2. 非弹性碰撞在非弹性碰撞中,碰撞物体之间的动能转化是部分或完全非弹性的,即碰撞前后物体的总动能发生变化。
在碰撞中会有能量损失或转化为其他形式的能量,如热能或声能等。
三、碰撞实验为了研究碰撞过程中的物理规律,物理学家进行了许多碰撞实验。
其中一种常见的实验是利用垂直摆线装置来研究弹性碰撞。
1. 弹性碰撞实验在弹性碰撞实验中,使用两个相同质量、相同速度的小球,使它们在垂直摆线装置上碰撞。
通过观察两个小球的运动轨迹和碰撞前后的速度变化,可以验证碰撞的动量守恒和动能守恒定律。
2. 非弹性碰撞实验非弹性碰撞实验可以通过将两个小球粘在一起或使用不同质量和速度的小球来模拟。
通过观察碰撞前后的速度变化,可以验证碰撞中动量守恒、动能守恒定律以及能量转化等规律。
四、碰撞定律碰撞定律是描述碰撞过程中物体的运动状态和相互作用的规律。
1. 动量守恒定律在碰撞过程中,系统的总动量保持不变。
即碰撞前后物体的总动量之和相等。
这一定律在弹性碰撞和非弹性碰撞中都成立。
2. 动能守恒定律在完全弹性碰撞中,碰撞前后系统的总动能保持不变。
但在非弹性碰撞中,碰撞前后系统的总动能可能发生变化。
3. 能量守恒定律碰撞过程中,不考虑外力的作用,系统的机械能保持不变。
这包括动能和势能的守恒。
在实际碰撞中,能量可能转化为其他形式的能量,如热能等。
五、碰撞问题的分析在解决碰撞问题时,首先需要明确问题中给定的条件和要求,进而运用碰撞定律进行分析和计算。
一、碰撞过程中动量守恒原则发生碰撞的物体系在碰撞过程中,由于作用时间很短,相互作用力很大,系统所受的外力大小可忽略,动量守恒。
二、碰撞后系统动能不增加原则碰撞过程中系统内各物体的动能将发生变化,对于弹性碰撞,碰撞后系统的总动能不变;而非弹性碰撞过程中系统内物体相互作用时,有一部分动能将转化为系统的内能,系统的总动能将减少。
因此,碰撞前系统的总动能一定大于或等于碰撞后系统的总动能。
三、碰撞后运动状态符合实际原则碰撞过程的发生应遵循客观实际,如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动。
例1.两球A、B在光滑的水平面上沿同一直线、同一方向运动,,,,当A追上B并发生碰撞后,两球A、B的速度的可能值是()A.B.C.D.解析:取两球碰撞前的运动方向为正,则碰撞前系统总动量,碰撞后,四个选项均满足动量守恒。
碰前系统总动能,碰后系统总动能应满足,选项C、D不满足被排除。
选项A虽然满足动能关系,但仔细分析不符合实际,即碰后球A不可能沿原方向比球B的速度更大,故选项B正确。
例2.A、B两小球在同一水平面上沿同一方向运动,两球的动量分别是,当A球追及B球并发生对心碰撞后,关于两球碰后动量和的数值正确的是()A.B.C.D.解析:选取小球初动量方向为正,显然四个选项均满足,但因球A追上球B发生碰撞故有即故可排除选项A、B因为又因为及动能关系,有得,即从而有,据此可排除选项C,正确答案为选项D。
例3.在光滑的水平面上,有两个小球A、B沿同一直线同向运动,已知碰前两球的动量分别为,A球追上B球并发生碰撞后,它们动量的变化是与,下列数值可能正确的是()A.B.C.D.解析:选取小球A、B的初动量方向为正方向,从动量守恒的观点看,四个选项都满足,由于球A、B同向运动,两球能发生碰撞,必有且,所以有,据此可排除选项B。
由动能关系有因为所以故,有即据此可排除选项D,因此正确答案为选项A、C。
第4课碰撞备课堂教学目标:(一)知识与技能1.会用动量守恒定律处理碰撞问题。
2.掌握弹性碰撞和非弹性碰撞的区别。
3.知道对心碰撞和非对心碰撞的区别。
4.知道什么是散射。
5.会用动量、能量的观点综合分析、解决一维碰撞问题.(二)过程与方法1、通过探究一维弹性碰撞的特点,体验科学探究的过程(由简单到复杂),掌握科学探究的方法(理论和实验相结合)。
2、理解从研究宏观碰撞到微观碰撞的引申思路,体验这种引申的重大意义,并进一步感受动量守恒定律的普适性。
(三)情感态度与价值观知道散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.重点:碰撞类问题的处理思想以及一维弹性碰撞的定量分析。
用动量、能量的观点综合分析、解决一维碰撞问题。
难点:通过定性研究二维弹性碰撞,理解从研究宏观碰撞到微观碰撞的引申思路。
教学方法:讲练法、举例法、阅读法教学用具:投影仪、投影片讲法速递(一)引入新课:观看丁俊晖打斯诺克的视频,讨论回答斯诺克在碰撞中有些在一条直线上,有些不在一条直线上的原因。
板书:第4节碰撞(二)进行新课:预习检查:1.从能量角度分类(1)弹性碰撞:碰撞过程中机械能守恒.(2)非弹性碰撞:碰撞过程中机械能不守恒.(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大. 2.从碰撞前后物体运动的方向是否在同一条直线上分类(1)正碰:(对心碰撞)两个球发生碰撞,如果碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.(2)斜碰:(非对心碰撞)两个球发生碰撞,如果碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度方向都会偏离原来两球心的连线而运动.判断正误:1.发生碰撞的两个物体,动量是守恒的.(√) 2.发生碰撞的两个物体,机械能是守恒的.(×)3.碰撞后,两个物体粘在一起,动量是守恒的,但机械能损失是最大的.(√) 思考:两小球发生对心碰撞,碰撞过程中,两球的机械能守恒吗?【提示】 两球发生对心碰撞,动量是守恒的,但机械能不一定守恒,只有发生弹性碰撞时,机械能才守恒.预习检查: 1.弹性碰撞特例(1)两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(2)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则v ′1=0,v ′2=v 1,即两者碰后交换速度. (3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.(4)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后,v ′1=v 1,v ′2=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.2.散射 (1)定义微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做散射. (2)散射方向由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方. 判断正误:1.与静止的小球发生弹性碰撞时,入射小球碰后的速度不可能大于其入射速度.(√) 2.两球发生弹性正碰时,两者碰后交换速度.(×)3.微观粒子发生散射时,并不是微观粒子直接接触碰撞.(√)思考:1.如图所示,光滑水平面上并排静止着小球2、3、4,小球1以速度v 0射来,已知四个小球完全相同,小球间发生弹性碰撞,则碰撞后各小球的运动情况如何?【提示】 小球1与小球2碰撞后交换速度,小球2与小球3碰撞后交换速度,小球3与小球4碰撞后交换速度,最终小球1、2、3静止,小球4以速度v 0运动.2.微观粒子能否碰撞?动量守恒定律适用于微观粒子吗?【提示】 宏观物体碰撞时一般相互接触,微观粒子碰撞时不一定接触,但只要符合碰撞的特点,就可认为是发生了碰撞,可以用动量守恒的规律分析求解.弹性碰撞的规律推导:质量为m 1的物体,以速度v 1与原来静止的物体m 2发生完全弹性碰撞,设碰撞后它们的速度分别为v ′1和v ′2,碰撞前后的速度方向均在同一直线上。
高中物理碰撞问题的理想模型碰撞是物理学中常见的现象,研究碰撞的理论和实验方法对了解物理现象的本质和数学研究有着重要作用。
碰撞的分析可以从微观和宏观两个角度来考虑。
在微观层面上,物体的碰撞是由粒子之间的相互作用引起的,粒子在碰撞中受到相互作用力的影响,其动能和势能也会发生变化。
在宏观层面上,物体碰撞所涉及的现象比较简单,可以通过数学方法来进行分析。
理想模型是对实际问题的数学抽象,为从复杂的现象中抽象出简单模型提供了便利。
在高中物理教学中,碰撞问题通常采用理想模型进行分析。
下面分别从弹性碰撞和非弹性碰撞两个方面来介绍碰撞问题的理想模型。
1. 碰撞问题的理想模型 - 弹性碰撞弹性碰撞是指碰撞前后物体所具有的动量和动能都守恒的碰撞。
在理想模型中,弹性碰撞的物体是理想刚体,并没有能量损失,所以物体的动量和动能都守恒。
设两个质量分别为m1和m2的物体,在碰撞前它们的速度分别为v1和v2,碰撞后分别为v1'和v2'。
根据动量守恒和能量守恒的原则,可以得到碰撞的理想模型:(1)动量守恒:m1v1+m2v2=m1v1'+m2v2'在弹性碰撞中,物体碰撞后产生反弹的情况比较常见。
反弹情况下,两个物体的速度会发生反向变化,如果两个物体的质量相等,则它们的速度大小也相等。
非弹性碰撞是指碰撞过程中物体的动量守恒,但是能量不守恒,即碰撞前和碰撞后物体的总动能不相等。
在非弹性碰撞中,物体的动量在碰撞前后守恒,但碰撞过程中能量转化为其他形式的能量,如声能、热能等,造成了能量损失。
在高中物理教学中,非弹性碰撞的理想模型比较简单,可以采用动量守恒的原理来进行分析。
(2)能量不守恒,能量损失为:(1/2)m1v1^2+(1/2)m2v2^2>(1/2)m1v1'^2+(1/2)m2v2'^2在非弹性碰撞中,物体在碰撞后的速度可能会发生变化,变化的情况取决于碰撞时所受到的相互作用力。
高中物理之碰撞知识点碰撞碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类弹性碰撞碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
一般碰撞碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
完全非弹性碰撞碰撞结束后,形变完全保留,通常表现为碰后两物体合二为一,以同一速度运动,碰撞前后系统的总动量相等,动能损失最多。
上述三种情况均不含其它形式的能转化为机械能的情况。
对心碰撞和非对心碰撞对心碰撞(正碰):碰撞以前的运动速度与两球心的连线在同一条直线,碰撞之后两球的速度仍会沿着这条直线。
非对心碰撞:碰撞之前球的运动速度与两球心得连线不再同一条直线上,碰撞之后两球的速度都会偏离原来两球心的连线散射一束粒子射入物体,粒子与物体中的微粒碰撞,研究碰撞后粒子的运动方向,可与得到与物质微观结构有关的很多信息。
因此,微观粒子的碰撞又叫做散射。
习题演练1. 两个物体发生碰撞()A 碰撞中一定产生了内能B 碰撞过程中,组成系统的动能可能不变。
C 碰撞过程中,系统的总动能可能增大。
D 碰撞过程中,系统的总动能可能减小。
2. 下列关于碰撞的理解正确的是()A 碰撞是指相对相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程。
B 在碰撞现象过程中,一般内力都远大于外力,所以可以认为系统的动能守恒。
C 如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞。
D 微观粒子的相互作用由于不发生接触,所以不能称其为碰撞。
习题解析1. BD弹性碰撞系统总动能不变;非弹性碰撞系统总动能减小。
2. AC。
高中物理碰撞问题的理想模型碰撞是物体之间发生相互作用的过程,它在物理学中有着重要的地位。
碰撞问题是研究碰撞过程的物理学问题,主要包括动量守恒、动量定理、能量守恒等方面的内容。
本文将介绍高中物理碰撞问题的理想模型。
碰撞可以分为完全弹性碰撞和非完全弹性碰撞两种情况。
对于完全弹性碰撞,碰撞物体在碰撞过程中互相之间没有能量损失,动量和能量守恒的条件都得到满足。
在这种情况下,碰撞物体在碰撞前后的动量大小和方向都保持不变,碰撞结果可以通过动量守恒定律来求解。
动量守恒定律可以表示为:物体1和物体2的质量分别为m1和m2,碰撞前的速度分别为v1和v2,碰撞后的速度分别为v1'和v2',则有m1v1 + m2v2 = m1v1' + m2v2'。
在解决碰撞问题时,我们通常会使用理想模型,这是因为在真实情况下,碰撞过程中还存在其他影响因素,如空气阻力、摩擦力等。
为了便于分析和计算,我们可以忽略这些因素,将碰撞过程简化为一个理想模型。
在理想模型中,我们可以假设碰撞物体为质点,忽略物体的体积和形状。
我们还可以假设碰撞过程中的时间短到可以忽略不计,从而使碰撞过程变为瞬时碰撞。
在瞬时碰撞中,碰撞物体在碰撞瞬间的速度可以看作是瞬时变化的,即碰撞瞬间的速度即为碰撞后的速度。
通过使用理想模型,我们可以轻松地分析和计算碰撞过程中的物理量,如速度、动量、动能等。
我们还可以通过改变模型中的各个参数,来研究和探索碰撞现象的特性。
高中物理碰撞问题的理想模型是一个非常有用的工具,它可以帮助我们理解和解决碰撞问题。
通过对理想模型的研究和运用,我们可以深入探索碰撞现象的本质和规律,并为实际应用提供有价值的指导。
碰撞问题(⼀)——考点透析碰撞问题是历年⾼考试题的重点和热点,同时它也是同学们学习的难点.它所反映出来的物理过程、状态变化及能量关系,能够全⽅位地考查同学们的理解能⼒、逻辑思维能⼒及分析推理能⼒.⾼考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律.⼀、考点诠释两个(或两个以上)物体相遇,物体之间的相互作⽤仅持续⼀个极为短暂的时间,⽽运动状态发⽣显著变化,这种现象称为碰撞。
碰撞是⼀个基本,⼗分重要的物理模型,其特点是:1.瞬时性.由于物体在发⽣碰撞时,所⽤时间极短,因此在计算物体运动时间时,通常把碰撞时间忽略不计;在碰撞这⼀极短的时间内,物体的位置是来不及改变的,因此我们可以认为物体在碰撞中位移为零。
2.动量守恒性.因碰撞时间极短,相互作⽤的内⼒⼤于外⼒,所以系统在碰撞过程中动量守恒。
3.动能不增.在碰撞过程中,系统总动能只有减少或者不变,⽽绝不会增加,即不能违背能量守恒原则。
若弹性碰撞则同时满⾜动量、动能守恒。
⾮弹性碰撞只满⾜动量守恒,⽽不满⾜动能守恒(系统的动能减少)。
⼆、解题策略⾸先要根据碰撞的瞬时性特点,正确选取相互作⽤的研究对象,使问题简便解决;其次要确定碰撞前和碰撞后系统中各个研究对象的状态;然后根据动量守恒定律及其他规律求解,并验证求得结果的合理性。
三、边解边悟1.在光滑的⽔平⾯上有三个完全相同的⼩球排成⼀条直线.2、3⼩球静⽌,并靠在⼀起,1球以速度v0射向它们,如图所示.设碰撞过程不损失机械能,则碰后三个⼩球的速度为多少?解析:本题的关键在于分析清楚实际的碰撞过程:由于球1与球2发⽣碰撞时间极短,球2的位置来不及发⽣变化,这样球2对球3也就⽆法产⽣⼒的作⽤,即球3不会参与此次碰撞过程.⽽球1与球2发⽣的是弹性碰撞,质量⼜相等,故它们在碰撞中实现速度交换,碰后球1⽴即停⽌,球2速度⽴即变为;此后球2与球3碰撞,再⼀次实现速度交换.所以碰后球1、球2的速度为零,球3速度为v 0.2.⽤轻弹簧相连的质量均为m =2㎏的A 、B 两物体都以v =6m/s 的速度在光滑的⽔平地⾯上运动,弹簧处于原⻓,质量M =4㎏的物体C 运动,在以后的运动中,求:(1)当弹簧的弹性势能最⼤时物体A 的速度。
36 碰撞问题【核心考点提示】一、碰撞过程的分类1.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失. 弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2. 碰后两个小球的速度分别为:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1(1)若m 1≫m 2,v 1′≈v 1,v 2′≈2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去.(2)若m 1≪m 2,v 1′≈-v 1,v 2′≈0,表示m 1被反向以原速率弹回,而m 2仍静止.(3)若m 1=m 2,则有v 1′=0,v 2′=v 1,即碰撞后两球速度互换.2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为:12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 二、碰撞过程的制约通常有如下三种因素制约着碰撞过程.1.动量制约:即碰撞过程必须受到动量守恒定律的制约;2.动能制约:即碰撞过程,碰撞双方的总动能不会增加;3.运动制约:即碰撞过程还将受到运动的合理性要求的制约.比如,某物体匀速运动,被后面物体追上并碰撞后,其运动速度只会增大而不会减小.再比如,碰撞后,后面的物体速度不能超过前面的物体.【训练】(多选)如图1,两个物体1和2在光滑水平面上以相同动能相向运动,它们的质量分别为m 1和m2,且m1< m2.经一段时间两物体相碰撞并粘在一起.碰撞后()A.两物体将向左运动B.两物体将向右运动C.两物体组成的系统损失能量最小D.两物体组成的系统损失能量最大【解析】根据p2=2mE k,结合m1<m2,知p1<p2,故系统总动量向左,根据动量守恒知碰后两物体将向左运动,所以A正确,B错误;由题意知两物体属于完全非弹性碰撞,损失动能最大,所以C错误,D正确.【答案】AD如图所示,A、B两小球在光滑水平面上分别以动量p1=4 kg·m/s和p2=6 kg·m/s(向右为参考正方向)做匀速直线运动,则在A球追上B球并与之碰撞的过程中,两小球的动量变化量Δp1和Δp2可能分别为()A.-2 kg·m/s, 3 kg·m/sB.-8 kg·m/s, 8 kg·m/sC.1 kg·m/s, -1 kg·m/sD.-2 kg·m/s, 2 kg·m/s【解析】由于碰撞过程中,动量守恒,两小球动量变化大小相等,方向相反,因此A错误;因为碰撞的过程中动能不增加.若Δp1和Δp2分别为-8 kg·m/s, 8 kg·m/s,则p1′=-4 kg·m/s,p2′=14 kg·m/s,根据E k=p22m知相撞过程中动能增加,B错误;两球碰撞的过程中,B球的动量增加,Δp2为正值,A球的动量减小,Δp1为负值,故C错误.变化量分别为-2 kg·m/s,2 kg·m/s,符合动量守恒、动能不增加以及实际的规律,故D正确.【答案】D【江西师范大学附属中学2017届高三上学期期中考试】甲、乙两球在光滑的水平面上,沿同一直线同一方向运动,它们的动量分别为p甲=10kg·m/s,p乙=14kg·m/s,已知甲的速度大于乙的速度,当甲追上乙发生碰撞后,乙球的动量变为20kg·m/s,则甲、乙两球的质量m甲:m乙的关系可能是()A.3:10B.1:10C.1:4D.1:6【答案】AC【解析】因为碰撞前,甲球速度大于乙球速度,则有p pm m甲乙乙甲>,得到57m pm p=甲甲乙乙<;根据动量守恒得:p甲+p乙=p甲′+p乙′,代入解得p甲′=4kg•m/s.根据碰撞过程总动能不增加,得到:2'22'22222p pmpm m mp+≥+甲甲乙乙乙乙甲甲代入解得:717mm≤甲乙;碰撞后两球同向运动,则甲的速度不大于乙的速度,应有:p pm m''≤甲乙乙甲代入解得:15mm≥甲乙;综合有:71517mm≤≤甲乙.故AC正确,BD错误.故选AC.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动【解析】取向右为正方向,根据动量守恒:m·2v0-2mv0=mv A+2mv B,知系统总动量为零,所以碰后总动量也为零,即A、B的运动方向一定相反,所以D正确,A、B、C错误.【答案】D(2013·江苏)水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示(注:原题中用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm,碰撞后相邻两位置之间的长度约为0.8 cm),据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的()A.30%B.50%C.70% D.90%【解析】 用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm ,碰撞后相邻两位置之间的长度约为0.8 cm ,则碰后与碰前速度比为v ′v =0.8 1.4=47,则碰撞过程中系统损失的动能约占碰撞前动能的12mv 2-122m v ′212mv 2=1-2×(v ′v )2=1-2×(47)2≈30%. 【答案】A如图所示,一个半径R =1.00 m 的粗糙14圆弧轨道,固定在竖直平面内,其下端切线是水平的,距地面高度h =1.25 m .在轨道末端放有质量m B =0.30 kg 的小球B (视为质点),B 左侧装有微型传感器,另一质量m A =0.10 kg 的小球A (也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6 N ,A 与B 发生正碰,碰后B 小球水平飞出,落到地面时的水平位移x =0.80 m ,不计空气阻力,重力加速度取g =10 m/s 2.求:(1)小球A 在碰前克服摩擦力所做的功;(2)A 与B 碰撞过程中,系统损失的机械能.【解析】(1)在最低点,对A 球由牛顿第二定律有F A -m A g =m A v A 2R得v A =4.00 m/s在A 下落过程中,由动能定理有:m A gR -W f =12m A v A 2 A 球在碰前克服摩擦力所做的功W f =0.20 J.(2)碰后B 球做平抛运动,在水平方向有x =v B ′t在竖直方向有h =12gt 2 联立以上两式可得碰后B 的速度v B ′=1.6 m/s对A 、B 碰撞过程,由动量守恒定律有m A v A =m A v A ′+m B v B ′碰后A 球的速度v A ′=-0.80 m/s ,负号表示碰后A 球运动方向向左由能量守恒得,碰撞过程中系统损失的机械能:ΔE 损=12mA v A 2-12m A v A ′2-12m B v B ′2故ΔE 损=0.384 J在A 与B 碰撞的过程中,系统损失的机械能为0.384 J.【答案】(1)0.20 J (2)0.384 J(2014·广东)如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .【解析】(1)P 1、P 2碰撞过程,动量守恒mv 1=2mv ①解得v =v 12=3 m/s ② 碰撞损失的动能ΔE =12mv 21-12(2m )v 2③ 解得ΔE =9 J ④(2)由于P 与挡板的碰撞为弹性碰撞.故P 在A →B →C →B (B ′)→A (A ′)等效为如图所示的匀减速运动.设P 在A →B →C →B (B ′)→A (A ′)段加速度大小为a ,由运动学规律,得μ(2m )g =2ma a =μg =0.1×10 m/s 2=1 m/s 2⑤P 返回经过B 时:3L =vt -12at 2⑥ 由①⑤⑥式,解得v =3L +12at 2t由于2 s≤t ≤4 s ,代入上式解得v 的取值范围5 m/s≤v ≤7 m/s ⑦所以v 1的取值范围10 m/s≤v 1≤14 m/s ⑧P 向左经过A (即图的A ′)时的速度v 2,则v 22-v 2=-2a ·4L ⑨ 将⑦代入⑨可知,当v =5 m/s 时,P 不能到达A ;当v =7 m/s 时,v 2=17 m/s所以v 2的取值范围v 2≤17 m/s ,所以当v 2=17 m/s 时,P 向左经过A 点时有最大动能E =12(2m )v 22=17 J 【答案】(1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J。
微专题36 碰撞问题【核心考点提示】 一、碰撞过程的分类1.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失. 弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2. 碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1(1)若m 1≫m 2,v 1′≈v 1,v 2′≈2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去. (2)若m 1≪m 2,v 1′≈-v 1,v 2′≈0,表示m 1被反向以原速率弹回,而m 2仍静止. (3)若m 1=m 2,则有v 1′=0,v 2′=v 1,即碰撞后两球速度互换.2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 二、碰撞过程的制约通常有如下三种因素制约着碰撞过程.1.动量制约:即碰撞过程必须受到动量守恒定律的制约; 2.动能制约:即碰撞过程,碰撞双方的总动能不会增加;3.运动制约:即碰撞过程还将受到运动的合理性要求的制约.比如,某物体匀速运动,被后面物体追上并碰撞后,其运动速度只会增大而不会减小.再比如,碰撞后,后面的物体速度不能超过前面的物体. 【微专题训练】(多选)如图1,两个物体1和2在光滑水平面上以相同动能相向运动,它们的质量分别为m 1和m2,且m1< m2.经一段时间两物体相碰撞并粘在一起.碰撞后()A.两物体将向左运动B.两物体将向右运动C.两物体组成的系统损失能量最小D.两物体组成的系统损失能量最大【解析】根据p2=2mE k,结合m1<m2,知p1<p2,故系统总动量向左,根据动量守恒知碰后两物体将向左运动,所以A正确,B错误;由题意知两物体属于完全非弹性碰撞,损失动能最大,所以C错误,D正确.【答案】AD如图所示,A、B两小球在光滑水平面上分别以动量p1=4 kg·m/s和p2=6 kg·m/s(向右为参考正方向)做匀速直线运动,则在A球追上B球并与之碰撞的过程中,两小球的动量变化量Δp1和Δp2可能分别为()A.-2 kg·m/s, 3 kg·m/sB.-8 kg·m/s, 8 kg·m/sC.1 kg·m/s, -1 kg·m/sD.-2 kg·m/s, 2 kg·m/s【解析】由于碰撞过程中,动量守恒,两小球动量变化大小相等,方向相反,因此A错误;因为碰撞的过程中动能不增加.若Δp1和Δp2分别为-8 kg·m/s, 8 kg·m/s,则p1′=-4 kg·m/s,p2′=14 kg·m/s,根据E k=p22m知相撞过程中动能增加,B错误;两球碰撞的过程中,B球的动量增加,Δp2为正值,A球的动量减小,Δp1为负值,故C错误.变化量分别为-2 kg·m/s,2 kg·m/s,符合动量守恒、动能不增加以及实际的规律,故D正确.【答案】D【江西师范大学附属中学2017届高三上学期期中考试】甲、乙两球在光滑的水平面上,沿同一直线同一方向运动,它们的动量分别为p甲=10kg·m/s,p乙=14kg·m/s,已知甲的速度大于乙的速度,当甲追上乙发生碰撞后,乙球的动量变为20kg·m/s,则甲、乙两球的质量m甲:m乙的关系可能是()A.3:10 B.1:10 C.1:4 D.1:6 【答案】AC【解析】因为碰撞前,甲球速度大于乙球速度,则有p pm m甲乙乙甲>,得到57m pm p=甲甲乙乙<;根据动量守恒得:p甲+p乙=p甲′+p乙′,代入解得p甲′=4kg•m/s.根据碰撞过程总动能不增加,得到:2'22'22222p pmpm m mp+≥+甲甲乙乙乙乙甲甲代入解得:717mm≤甲乙;碰撞后两球同向运动,则甲的速度不大于乙的速度,应有:p pm m''≤甲乙乙甲代入解得:15mm≥甲乙;综合有:71517mm≤≤甲乙.故AC正确,BD错误.故选AC.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动【解析】取向右为正方向,根据动量守恒:m·2v0-2mv0=mv A+2mv B,知系统总动量为零,所以碰后总动量也为零,即A、B的运动方向一定相反,所以D正确,A、B、C错误.【答案】D(2013·江苏)水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示(注:原题中用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm,碰撞后相邻两位置之间的长度约为0.8 cm),据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的()A.30%B.50%C.70% D.90%【解析】 用直尺测量,碰撞前相邻两位置之间的长度约为1.4 cm ,碰撞后相邻两位置之间的长度约为0.8 cm ,则碰后与碰前速度比为v ′v =0.81.4=47,则碰撞过程中系统损失的动能约占碰撞前动能的12mv 2-12m v ′212mv 2=1-2×(v ′v )2=1-2×(47)2≈30%.【答案】A如图所示,一个半径R =1.00 m 的粗糙14圆弧轨道,固定在竖直平面内,其下端切线是水平的,距地面高度h =1.25 m .在轨道末端放有质量m B =0.30 kg 的小球B (视为质点),B 左侧装有微型传感器,另一质量m A =0.10 kg 的小球A (也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6 N ,A 与B 发生正碰,碰后B 小球水平飞出,落到地面时的水平位移x =0.80 m ,不计空气阻力,重力加速度取g =10 m/s 2.求:(1)小球A 在碰前克服摩擦力所做的功; (2)A 与B 碰撞过程中,系统损失的机械能. 【解析】(1)在最低点,对A 球由牛顿第二定律有 F A -m A g =m A v A 2R得v A =4.00 m/s在A 下落过程中,由动能定理有: m A gR -W f =12m A v A 2A 球在碰前克服摩擦力所做的功W f =0.20 J. (2)碰后B 球做平抛运动,在水平方向有x =v B ′t 在竖直方向有h =12gt 2联立以上两式可得碰后B 的速度v B ′=1.6 m/s 对A 、B 碰撞过程,由动量守恒定律有 m A v A =m A v A ′+m B v B ′碰后A 球的速度v A ′=-0.80 m/s ,负号表示碰后A 球运动方向向左 由能量守恒得,碰撞过程中系统损失的机械能: ΔE 损=12m A v A 2-12m A v A ′2-12m B vB ′2故ΔE 损=0.384 J在A 与B 碰撞的过程中,系统损失的机械能为0.384 J. 【答案】(1)0.20 J (2)0.384 J(2014·广东)如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作,已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .【解析】(1)P 1、P 2碰撞过程,动量守恒mv 1=2mv ① 解得v =v 12=3 m/s ②碰撞损失的动能ΔE =12mv 21-12(2m )v 2③解得ΔE =9 J ④(2)由于P 与挡板的碰撞为弹性碰撞.故P 在A →B →C →B (B ′)→A (A ′)等效为如图所示的匀减速运动.设P 在A →B →C →B (B ′)→A (A ′)段加速度大小为a ,由运动学规律,得μ(2m )g =2ma a =μg =0.1×10 m/s 2=1 m/s 2⑤ P 返回经过B 时:3L =vt -12at 2⑥由①⑤⑥式,解得v =3L +12at 2t由于2 s≤t ≤4 s ,代入上式解得v 的取值范围5 m/s≤v ≤7 m/s ⑦ 所以v 1的取值范围10 m/s≤v 1≤14 m/s ⑧ P 向左经过A (即图的A ′)时的速度v 2,则v 22-v 2=-2a ·4L ⑨ 将⑦代入⑨可知,当v =5 m/s 时,P 不能到达A ; 当v =7 m/s 时,v 2=17 m/s所以v 2的取值范围v 2≤17 m/s ,所以当v 2=17 m/s 时,P 向左经过A 点时有最大动能E =12(2m )v 22=17 J 【答案】(1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J。
高中物理·碰撞问题归类
一、碰撞的定义
相对运动的物体相遇,在极短的时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
二、碰撞的特点
作用时间极短,相互作用的内力极大,有些碰撞尽管外力之和不为零,但一般外力(如重力、摩擦力等)相对内力(如冲力、碰撞力等)而言,可以忽略,故系统动量还是近似守恒。
在剧烈碰撞有三个忽略不计,在解题中应用较多。
1.碰撞过程中受到一些微小的外力的冲量不计。
2.碰撞过程中,物体发生速度突然变化所需时间极短,这个极短时间对物体运动的全过程可忽略不计。
3.碰撞过程中,物体发生速度突变时,物体必有一小段位移,这个位移相对于物体运动全过程的位移可忽略不计。
三、碰撞的分类
1.弹性碰撞(或称完全弹性碰撞)
如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞)。
此类碰撞过程中,系统动量和机械能同时守恒。
2.非弹性碰撞
如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞。
此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒。
3.完全非弹性碰撞
如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞。
碰撞物体粘合在一起,具有同一速度。
此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大。