P_m_C_n及C_m_C_n的点可区别全染色
- 格式:pdf
- 大小:356.42 KB
- 文档页数:5
收稿日期:2008203220.基金项目:连云港师专科研课题资助项目(L SZTD200806);连云港师范高等专科学校青蓝工程资助项目.作者简介:王继顺(19702),男,山东临沭人,连云港师范高等专科学校讲师,硕士,主要从事图论与组合优化,计算机辅助几何设计研究. 文章编号:16722691X (2009)0120003203C m ×K n 的邻点可区别全染色王继顺1,李步军2(1.连云港师范高等专科学校数学系,江苏连云港222006;2.淮海工学院数理科学系,江苏连云港222005)摘 要:设G (V ,E )是阶数至少为2的简单连通图,k 是正整数,V ∪E 到{1,2,3,…,k}的映射f 满足:对任意uv ,vw ∈E (G ),u ≠w ,有f (uv )≠f (vw );对任意uv ∈E (G ),有f (u )≠f (v ),f (u )≠f (uv ),f (v )≠f (uv );那么称f 为G 的k 2正常全染色,若f 还满足对任意uv ∈E (G ),有C (u )≠C (v ),其中C (u )={f (u )}∪{f (uv )|uv ∈E (G ),v ∈V (G )},那么称f 为G 的k 2邻点可区别的全染色(简记为k 2AVD TC ),称min {k |G 有k 2邻点可区别的全染色}为G 的邻点可区别的全色数,记作 at (G ).本文得到了圈C m 和完全图K n 的笛卡尔积图C m ×K n 邻点可区别的全色数.关键词:图;全染色;邻点可区别全染色;邻点可区别全色数中图分类号:O157.5 文献标识码:A 引言具有重要的实际意义和理论意义的图的染色问题,是图论研究的主要内容之一.文[1]提出图的邻点可区别全染色的概念,得到了圈、完全图、扇、轮、树等特殊图的邻点可区别全色数,并给出了相应的猜想.为验证这一猜想,文[2~5]研究了一些特殊图及由图的不同运算所得到的图的邻点可区别的全染色问题.图的染色的基本问题就是确定其各种染色法的色数,该类问题属于N P 难问题.笛卡儿积图是图论中重要的一种图,也是在计算机信息网络、交通网络等实际中常见的一种图,具有重要的研究意义和广泛的应用价值.文[5]研究了路P m 与完全图K n 笛卡尔积图P m ×K n 的邻点可区别的全染色问题,得到了该笛卡尔积图的邻点可区别的全染色数.本文研究了圈C m 与完全图K n 的笛卡尔积图C m ×K n 的邻点可区别的全染色,得到其邻点可区别的全染色数,说明文[1]的猜想是正确的.定义1[1] 设G (V ,E )是阶数至少为2的简单连通图,V ∪E 到{1,2,3,…,k}的映射f 满足:(1)对任意u ,v ,w ∈V (G ),uv ,vw ∈E (G ),u≠w ,有f (uv )≠f (vw );(2)对任意u ,v ∈V (G ),uv ∈E (G ),有f (u )≠f (v ),f (u )≠f (uv ),f (v )≠f (uv );那么称f 为G (V ,E )的k 2正常全染色.若f 还满足(3)对任意uv ∈E (G ),有C (u )≠C (v ),其中C (u )={f (u )}∪{f (uv )|uv ∈E (G ),v ∈V (G )}.那么称f 为G 的k 2邻点可区别的全染色(简记为k 2AVD TC ),称min {k |G (V ,E )CSP k 2AVD TC }为G (V ,E )的邻点可区别的全色数,记作 at G (V ,E ).猜想[1] 对阶数不小于2的简单连通图G(V ,E ),有 at (G )≤△(G )+3.其中△(G )为G (V ,E )中顶点的最大度.令珚C (u )={1,2,…,k}-C (u ),如果对任意u ,v ∈V (G ),uv ∈E (G ),C (u )≠C (v ),则珚C (u )≠珚C (v ),反之也成立.定义2[1] 令C m 为圈,K n 为完全图,并设V (C m )={u 1,u 2,…,u m },E (C m )={u 1u 2,u 2u 3,…,u m-1u m ,u m u 1};V (K n )={v 1,v 2,…,v m },E (K n )={v i v j |i ,j =1,2,….n ,i <j}.构造C m 与K n 的笛卡尔积图如下:第23卷第1期甘肃联合大学学报(自然科学版)Vol.23No.1 2009年1月Journal of G ansu Lianhe University (Natural Sciences )Jan.2009 V (C m ×K n )={w ij |i =1,2,…,m ;j =1,2,…,n},E (C m ×K n )={w ij w st |i =s且v j v t ∈E (K n )或者j =t 且∈v i v s ∈E (C n )}.所构造的笛卡尔积图以下简记作C m ×K n .文中所考虑的是有限无向简单连通图,用到的未加说明的术语或记号可参见文献[6~8]. 主要结果引理1[1]对阶数不小于2的简单连通图G(V ,E ),若G 有两个相邻的最大度顶点,则at (G )≥△(G )+2;如果G 最大度点都不相邻,则有at (G )≥△(G )+1. 引理2[1]设有m 阶圈C m (m ≥4),则at (C m )=4, 对于n 阶完全图K n (n ≥3),有at (K n )=n +1,n ≡0(mod2),n +2,n ≡1(mod2). 由于当n =1时,易见C m ×K 1=C m ,由引理1,可得如下结论成立.定理1 m 阶圈C m (m ≥4)与n 阶完全图K n的笛卡尔积图为C m ×K n ,则当n =1时,at (C m ×K n )=4,m ≥4. 定理2 m 阶圈C m (m ≥4)与n 阶完全图K n 的笛卡尔积图为C m ×K n ,则当n ≥2时,at (C m ×K n )=n +3,m ≥4. 证明 由引理1可得, at (C m ×K n )≥n +3.为证明 at (C m ×K n )=n +3,只需证明C m ×K n 存在一个(n +3)2AVD TC ,现分两种情况证明如下.情形1 当m ≡0(mod2)时,设由n +3种颜色组成的色集合为C ={1,2,…,n +3},对图的边或顶点染色确定为c ,为保证c ∈C ,若c 比1小或者大于n +3,c 的取值为r ,这里r ∈{1,2,…,n +3}且c ≡r (mod n +3).现构造V (C m ×K n )∪E(C m ×K n )到C 的映射f 如下:f (w ki w kj )≡i +j -2,i =1,2,…,m ,j =1,2,…,n.当1≤k ≤m -1时,分别有f (w kj )≡n +j -1,k ≡1(mod2),f (w kj )≡n +j ,k ≡0(mod2),j =1,2,…,n;当k =m 时,f (w mj )≡n +j +1(mod n +3),,j =1,2,…,n;当j =1时,分别有f (w k 1w k+11)=n +3,1≤k ≤m -2,且k ≡1(mod2),f (w k 1w k+11)=n +2,1≤k ≤m -2,且k ≡1(mod2),其中若k =m -1,令f (w m-11w m 1)=n +3.当2≤j ≤n 时,分别有f (w kj w k+1j )≡2(j -1),1≤k ≤m -1,且k ≡1(mod2),f (w kj w k+1j )≡n +j +1,1≤k ≤m -1,且k ≡0(mod2),而f (w mj w 1j )≡n +j ,j =1,2,…,n;按照如上的染色法,可得当k =1时珚C (w kj )=n +j -1(mod n +3),j =1,2,…,n;当2≤k ≤m 时,分别有珚C (w kj )=n +j +1(mod n +3),k ≡0(mod2),珚C (w kj )=n +j (mod n +3),k ≡1(mod2),j =1,2…,n. 为此,图中任意相邻的顶点都有不同的邻点可区别的染色集合.所以f 是笛卡尔积图C m ×K n 的(n +3)2AVD TC .情形2 当m ≡1(mod2)时,设由n +3种颜色组成的色集合为C ={1,2,…,n +3},对图的边或顶点染色确定为c ,为保证c ∈C ,若c 比1小或者大于n +3,c 的取值为r ,这里r ∈{1,2,…,n +3}且c ≡r (mod n +3).现构造V (C m ×K n )∪E (C m ×K n )到C 的映射f 如下:f (w ki w kj )≡i +j -2,i =1,2,…,m ,j =1,2,…,n.当1≤k ≤m -1时,分别有f (w kj )≡n +j -1,k ≡1(mod2),j =1,2,…,n ,f (w kj )≡n +j ,k ≡0(mod2),j =1,2,…,n.当k =m 时f (w mj )≡n +j +1,j =1,2,…,n;当j =1时,分别有f (w k 1w k+11)=n +3,1≤k ≤m -2,且k ≡1(mod2),f (w k 1w k+11)=n +2,1≤k ≤m -2,且k ≡0(mod2),4 甘肃联合大学学报(自然科学版) 第23卷其中若k =m -1,令f (w m-11w m 1)=n ,当2≤j ≤n 时,分别有f (w kj w k+1j )≡2(j -1),1≤k ≤m -2,且k ≡1(mod2),f (w kj w k+1j )≡n +j +1,1≤k ≤m -2,且k ≡0(mod2),其中若k =m -1,f (w m-1j w mj )=n +j -1,j =2,…,n ,而f (w mj w 1j )≡n +j ,j =1,2,…,n;由如上的染色法,可得当k =1时,珚C (w kj )=n +j +1(mod n +3),j =1,2,…,n;当2≤k ≤m 时,分别有珚C (w kj )=n +j +1(mod n +3),k ≡0(mod2),珚C (w kj )=n +j (mod n +3),k ≡1(mod2),j =1,2…,n.当k =m -1,m 时珚C (w m-1j )=n +j +1(mod n +3),j =1,2,…,n ,珚C (w mj )=2(j -1)(mod n +3),2≤j ≤n ,而珚C (w m 1)=n +3.容易验证对V (C m ×K n )中任意相邻两顶点的染色集合不同,所以C m ×K n 存在(n +3)2AVD TC .综上可得,结论成立.参考文献:[1]张忠辅,陈祥恩,李敬文,等.关于图的邻点可区别全染色[J ].中国科学(A 辑),2004,34(5):5742583.[2]王治文,王莲花,王继顺,等.关于θ2图的邻点可区别的全染色[J ].兰州交通大学学报:自然科学版,2004,23(3):13215.[3]王继顺,邱泽阳,张忠辅,等.联图F n ∨P m 的邻点可区别全染色[J ].应用数学学报,2006,29(5):8792884.[4]L I Jing 2wen ,YAO Bing ,CH EN G Hui ,et al.Adjacentvertex 2distinguishing edge chromatic number of C n ×K n [J ].Journal of Lanzhou University :Natural Sci 2ences ,2005,41(1):96298.[5]CH EN Xiang 2en ,ZHAN G Zhong 2f u.Adjacent 2Ver 2tex 2Destinguishing Total Chromatic Number of P m ×K n [J ].Journal of Mathematical Research and Expo 2sition ,2006,26(3):4892494.[6]BOND Y J A ,MUR T Y U S.Graph theory with appli 2cations [M ].New Y ork :Macmillan ,London and Elsevier ,1976.[7]DIETEL R.Graph theory [M ].New Y ork :Spring 2Verlag ,1997.[8]HANSEN P ,MARCO T TE O.Graph coloring and ap 2plication[M ].Rhode Island :AMS Providence ,1999.Adjacent 2V ertex 2Distinguishing Total Chromatic Number of C n ×K nW A N G J i 2S hun 1,L I B u 2j un2(1.Department of mathematics ,Lianyungang Teacher ’s College ,Lianyungang 222006,China2.Department of Mathematics and Physics ,Huaihai Institute of Technology ,Lianyungang 222005,China )Abstract :Let G be a simple grap h.A k 2p roper total coloring of G is called adjacent 2distinguishing if for arbitrary two adjacent vertices u and v ,C (u )≠C (v ),where C (u )is t he set of t he colors of u and ed 2ges which is adjacent to u .The minimum k such t hat G (V ,E )has a k 2adjacent 2vertex 2distinguishing total coloring is called t he adjacent 2vertex 2distinguishing total chro matic number.The adjacent 2vertex 2distinguishing total chromatic number o n t he Cartesion product of circle C m and complete grap h K n (C n×K n )is obtained..K ey w ords :grap h ;total coloring ;adjacent 2vertex 2distinguishing total coloring ;adjacent 2vertex 2distin 2guishing total chromatic number5第1期 王继顺等:C m ×K n 的邻点可区别全染色 。
目录中文摘要------------------------------------------------------------------2 英文摘要------------------------------------------------------------------3 引言----------------------------------------------------------------------4 一、mycielski图的定义-----------------------------------------------------5 1. mycielski图的定义----------------------------------------------------52 . 广义mycielski图的定义-----------------------------------------------5二、mycielski图的染色问题-------------------------------------------------5(一)边色数----------------------------------------------------------------51. Mycielski图的边色数---------------------------------------------------52.广义Myc ielski 图的边色数----------------------------------------------6(二)邻强边色数------------------------------------------------------------61. Myciel ski 图的邻强边色数---------------------------------------------72. 广义Mycielski 图的邻强边色数------------------------------------------7 (三)全色数--------------------------------------------------------------81. Mycielski图的全色数--------------------------------------------------82. 广义Mycielski图的全色数---------------------------------------------9 (四)邻点可区别全色数----------------------------------------------------91.Mycielski 图的邻点可区别全色数---------------------------------------102.广义Mycielski图的邻点可区别全色数----------------------------------12 致谢--------------------------------------------------------------------13 参考文献----------------------------------------------------------------14Mycielski图的染色问题摘要:本论文总结了Mycielski 图及广义Mycielski 图关于染色问题的各方面定义和定理,主要包括边色数、邻强边色数、全色数、邻点可区别全色数的相关结论。