湖南省衡南县2015届九年级数学省市重高直招考试试题
- 格式:doc
- 大小:282.50 KB
- 文档页数:6
2015 年衡阳市初中毕业学业水平考试一试卷数学考生注意: 1.本学科试卷共三道大题,满分120 分,考试时量 120 分钟。
2.本试卷的作答一律答在答题卡上,选择题用2B 铅笔按涂写要求将你以为正确的选项涂黑;非选择题用黑色墨水署名笔作答,作答不可以高出黑色矩形边框。
直接在试题卷上作答无效。
一、选择题(本大题共12 个小题,每题3 分,满分 36 分。
在每题给出的四个选项中只有一项为哪一项切合题目要求的。
)D 】01.计算12 的结果是【A .3B .1C.1D.302.以下计算正确的选项是【 A 】2A .a a 2a B.b3gb32b3C.a3 a a3D.a57a 03.以下左图的几何体是由一个圆柱体和一个长方体构成的,则这个几何体的俯视图是【C】A.B.1C. D .04.若分式x2的值为 0 ,则x的值为【C】x1A.2或1B.0C.2D.105.函数y x1中自变量 x 的取值范围为【B】A .x≥0B .x≥1C.x>1 D .x≥1≥206.不等式组B<的解集在数轴上表示为【】x1A .B.C. D .07.若等腰三角形的两边长分别为 5 和 6 ,则这个等腰三角形的周长为【 D 】A .11B.16C.17D.16或1708.若对于x的方程x23x a0 有一个根为1,则另一个根为【A】A .2B .2C.4D.309.以下命题是真命题的是【A】A .对角线相互均分的四边形是平行四边形B .对角线相等的四边形是矩形C.对角线相互垂直的四边形是菱形D.对角线相互垂直均分的四边形是正方形10.在今年全国助残日捐钱活动中,某班级第一小组七名同学踊跃捐出自己的零花费,奉献自己的爱心。
他们捐钱的数额分别是50、20、50、30、25、50、55 (单位:元),这组数据的众数和中位数分别是A.50元,30元B.50元,40元C.50元,50元D.55元,50元【 C】11.绿苑小区在规划设计时准备在两栋楼房之间设置一块面积为900平方米的矩形绿地且长比宽多10米,设绿地的宽为x 米,依据题意,可列方程为【B】A .x x 10900B.x x 10 900C.10 x 10900D.2 x x10900 12.如图,为了测得电视塔的高度AB ,在 D 处用高为 1米的测角仪CD 测得电视塔顶端 A 的仰角为30o,再向电视塔方向行进100米抵达 F处又测得电视塔顶端 A 的仰角为60o,则这个电视塔的高度AB为【 C】A.50 3米B.51米C.503 1 米D.101米二、填空题(本大题共 8 个小题,每题 3 分,满分24 分。
第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。
湖南省衡阳市2015年中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、(2015•衡阳)的相反数是()A、B、5 C、﹣5 D、﹣考点:相反数。
专题:计算题。
分析:根据相反数的定义求解即可.解答:解:根据相反数的定义有:的相反数是﹣.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2015•衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A、3.1×106元B、3.1×105元C、3.2×106元D、3.18×106元考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:3185800≈3.2×106.故选C.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2015•衡阳)如图所示的几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最中间有一个正方形.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.4、(2015•衡阳)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A、B、C、D、考点:中心对称图形;生活中的旋转现象。
2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。
-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。
数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前湖南省衡阳市2015年初中毕业学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算0(1)2-+-的结果是( ) A .3-B .1C .1-D .3 2.下列计算正确的是( )A .2a a a +=B .3332b b b =C .33a a a ÷=D .527()a a =3.如图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )AB C D 4.若分式21x x -+的值为0,则x 的值为( ) A .2或B .0C .2D .1- 5.函数y =中自变量x 的取值范围为( ) A .0x ≥B .1x -≥C .1x ->D .1x ≥ 6.不等式组21x x ⎩-⎧⎨≥<,的解集在数轴上表示为( )ABCD7.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .1617或 8.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为( )A .2-B .2C .4D .3- 9.下列命题是真命题的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形10.在2015年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ) A .50元,30元 B .50元,40元 C .50元,50元D .55元,50元11.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿 地,并且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为( )A .(10)900x x -=B .(10)900x x +=C .10(10)900x +=D .[]2(10)900x x +-=12.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测 角仪CD ,测得电视塔顶端A的仰角为30,再向电视塔方向前进100米达到F 处,又测得电视塔顶端A 的仰角为60,则这个电视塔的高度AB (单位:米)为( )毕业学校_____________ 姓名________________ 考生号________________ _____________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)A. B .51 C.1D .101第Ⅱ卷(非选择题 共84分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 13.在1-,0,2-这三个数中,最小的数是 .14.如图,已知直线a b ∥,1120=∠,则2∠的度数是 .15..16.方程13=2x x -的解为 .17.圆心角为120的扇形的半径为3,则这个扇形的面积为 (结果保留π). 18.如图,小明为了测量学校里一池塘的宽度AB ,选取可以直达A ,B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得20m MN =,则池塘的宽度AB 为 m .19.已知3a b +=,1a b -=-,则22a b -的值为 .20.如图,112A B A △,223A B A △,334A B A △,…,1n n n A B A +△都是等腰直角三角形,其中点1A 2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在直线y x =上.已知11OA =,则2015OA 的长为 .三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分6分)先化简,再求值:2(2)()a a b a b -++,其中1,a b =-.22.(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 23.(本小题满分6分)如图,在平面直角坐标系中,ABC △的三个顶点坐标分别为(3,2),B(3,5),C(1,2)A . (1)在平面直角坐标系中画出ABC △关于x 轴对称的111A B C △;(2)把ABC △绕点A 顺时针旋转一定的角度,得图中的22AB C △,点2C 在AB 上.①旋转角为多少度?数学试卷 第5页(共30页) 数学试卷 第6页(共30页)②写出点2B 的坐标.24.(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.25.(本小题满分8分)某药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x ≤≤时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?26.(本小题满分8分)如图,AB 是O 的直径,点,C D 为半圆O 的三等分点,过点C 作CE AD ⊥,交AD 的延长线于点E .(1)求证:CE 是O 的切线;(2)判断四边形AOCD 是否为菱形?并说明理由.27.(本小题满分10分)如图,顶点M 在y 轴上的抛物线与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连结,AM BM . (1)求抛物线的函数关系式;(2)判断ABM △的形状,并说明理由;(3)把抛物线与直线y x =的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为,2m m (),当m 满足什么条件时,平移后的抛物线总有不动点.28.(本小题满分10分)如图,四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点,O A 不重合),连接CP ,过点P 作PM CP ⊥交AB 于点D ,且PM CP =,过点M 作MN OA ∥,交BO 于点N ,连接,ND BM ,设OP t =. (1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由; (3)当t 为何值时,四边形BNDM 的面积最小.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页)数学试卷 第8页(共30页)湖南省衡阳市2015年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】原式123=+=。
2015年下期九年级上册数学基础知识竞赛试卷一、选择题(每小题3分,共24分)1.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -=B.2(2)1x -=C.2(2)1x +=D.2(2)2x += 2.在△ABC 中,a=2 ,b=6 ,c=22 ,则最长边上的中线长为( ) A.2 B.3 C.2 D.以上都不对3.若20 10a b b c ==,,则a bb c ++的值为( ).(A )1121 (B )2111 (C )11021 (D )210114.如图,是一块三角形草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边 的距离相等,凉亭的位置应选在( )A.三角形的三条中线的交点B.三角形三边的垂直平分线的交点C.三角形三条角平分线的交点D.三角形三条高所在直线的交点 3y x=5.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线(0x >)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( )A.逐渐增大B. 逐渐减小C.不变D.先增大后减小6.如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ⊥BC ,∠B=60°,BC=2cm , 则梯形ABCD 的面积为( )A .33cm 2 B. 6cm 2 C. 63cm 2 D.12cm 27.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+ B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+-8.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4二、填空题(每小题3分,共21分)9.“等腰三角形两腰上的高相等”,这个命题的逆命题是 . 10.方程x(x-1)=2(x-1)的解为 .11.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边 AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 cm .12.在正方形ABCD 中有一点E ,△EAB 是等边三角形,则∠CED 为 .13一个函数的图像关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数24y x bx =+-是“偶函数”,该函数的图像与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是 14.如图,在△ABC 中,AB =AC =1,点D 、E 在直线BC 上运 动,设BD =x ,CE =y.如果∠BAC =30°,∠DAE =105°, 则y 与x 之间的函数关系式为 .15.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .三、解答题(共55分) 16.计算:00203tan 60|3sin 30|cos 45+-- (6分)17.在国家的宏观调控下,某市的商品房成交价由今年3月份的14000元/平方米下降到5 月份的12600元/平方米.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)(2)如果房价继续回落,按照此前降价的百分率,你预测到7月份该市的商品房成交价是 否会跌破10000元/平方米?请说明理由。
2015年衡阳市初中毕业学业水平考试试卷数学考生注意:1、本试卷共三道大题,满分120分,考试时量120分钟。
2、本试卷的作答一律答在答题卡上,选择题用2B铅笔按涂写要求将你认为正确的选项涂黑;非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框。
直接在试卷上作答无效。
一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算的结果是().A.-3 B.1 C.-1 D.3【答案】D【解析】根据非零实数的0次幂,得(-1)0=1,而|-2|=2,结果为1+2=3。
【考点】零指数幂;绝对值;有理数加法。
2.下列计算正确的是().A.B.C.D.【答案】A【解析】a+a=2a,故选项A正确;【考点】合并同类项;同底数幂的乘除法;幂的乘方。
3.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是().【答案】C【解析】根据俯视图是从几何体上面看到的视图发现,A选项不正确,B选项是从正面看到的视图为主视图,C选项为从上面看到的是俯视图,D选项为从侧面看到的左视图,故正确答案为C。
【考点】简单组合体的三视图。
4.若分式的值为0,则的值为().A.2或-1 B.0 C.2 D.-15.函数中自变量的取值范围为().A.B.C.D.6.不等式组的解集在数轴上表示为().A.B.C.D.7.已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11 B.16 C.17 D.16或178.若关于的方程有一个根为﹣1,则另一个根为().A.-2 B.2 C.4 D.-39.下列命题是真命题的是().A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形10.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元B.50元,40元C.50元,50元D.55元,50元11.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为米,根据题意,可列方程为().A.B.C.D.12.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为().A.B.51 C.D.101二、填空题(本大题共8个小题,每小题3分,满分24分.)13.在-1,0,-2这三个数中,最小的数是.14.如图,已知直线∥,∠1=120°,则∠2的度数是.15.计算:.16.方程的解为.17.圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留).18.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.19.已知,,则的值为.20.如图,△,△,△,…,△,都是等腰直角三角形.其中点,,…,在轴上,点,,…,,在直线上.已知,则的长为.三、解答题(本大题共8个小题,满分60分.解答应写出文字说明、证明过程或演算步骤.)21.(本小题满分6分)先化简,再求值,其中,.22.(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整...的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格“的百分比为.(2)本次体质抽测中,抽测结果为“不合格“等级的学生有人.(3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有人.23.(本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.25.(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间小时之间的函数关系如图所示(当时,与成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段与之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?26.(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.【答案】(1)证明见试题解析;(2)四边形AOCD是菱形;理由见试题解析27.(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?28.(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP =.(1)求点M的坐标(用含的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;(3)当为何值时,四边形BNDM的面积最小.(3)由(1)知:∠MPE=∠PCO,又∠DAP=∠POC=90°∴△DAP∽△POC,∴,∵OP=,OC=4,∴AP=4-∴,∴AD=,∴BD==∵MN∥OA,AB⊥OA;∴MN⊥BD∵S四边形BNDM=∴S=。
2015年湖南省湘西州中考数学试卷一、填空题(本大题共8小题,每小题4分,共32分)1.(4分)﹣2015的绝对值是.2.(4分)如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2=度.3.(4分)分解因式:x2﹣4=.4.(4分)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为人.5.(4分)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为.6.(4分)函数y=的自变量取值范围是.7.(4分)如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC 的面积之比为.8.(4分)如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为cm.二、选择题(本大题共10小题,每小题4分,共40分)9.(4分)下列运算正确的是()A.a+2a=2a2B .+=C.(x﹣3)2=x2﹣9 D.(x2)3=x610.(4分)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B 的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)11.(4分)下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体12.(4分)湘西土家族苗族自治州6月2日至6月8日最高气温(℃)统计如下表:则这七天最高气温的中位数为()A.25℃B.27℃C.28℃D.30℃13.(4分)下列方程中,没有实数根的是()A.x2﹣4x+4=0B.x2﹣2x+5=0 C.x2﹣2x=0D.x2﹣2x﹣3=014.(4分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C.4.88 D.4.8915.(4分)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内C.点A在圆外D.无法确定16.(4分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°17.(4分)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B.C.D.18.(4分)下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形三、解答题(本大题共8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(5分)计算:32﹣20150+tan45°.20.(5分)解不等式组,并把解集在数轴上表示出来.21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.22.(8分)如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.23.(8分)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.24.(8分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?25.(12分)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.26.(24分)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.2015年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题共8小题,每小题4分,共32分)1.(4分)﹣2015的绝对值是2015.【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(4分)如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2=140度.【分析】根据平行线的性质,两直线平行,同旁内角互补解答即可.【解答】解:∵a∥b,∠1=40°,∴∠2=180°﹣40°=140°,故答案为:1403.(4分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).4.(4分)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.5.(4分)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为.【分析】根据概率公式知,6个数中有1个数为1,故掷一次骰子,向上一面的点数为1的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有1种为向上一面的点数是1,故其概率是:.故答案为:.6.(4分)函数y=的自变量取值范围是x≠2.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得,2﹣x≠0,解得:x≠2.故答案是:x≠2.7.(4分)如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC 的面积之比为1:4.【分析】根据三角形的中位线得出EF=BC,DE∥BC,推出△EF∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.8.(4分)如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为4cm.【分析】首先由垂径定理可知:AE=BE,然后再在Rt△AOE中,由特殊锐角三角函数可求得AE=OE=2,从而可求得弦AB的长.【解答】解:∵OE⊥AB,∴AE=EB在Rt△AOE中,∠OAB=45°,∴tan∠OAB=,∴AE=OE=2.∴AB=2AE=2×2=4.故答案为:4cm.二、选择题(本大题共10小题,每小题4分,共40分)9.(4分)下列运算正确的是()A.a+2a=2a2B.+=C.(x﹣3)2=x2﹣9 D.(x2)3=x6【分析】分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、a+2a=2a≠2a2,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、(x﹣3)2=x2﹣6x+9,故本选项错误;D、(x2)3=x6,故本选项正确.故选:D.10.(4分)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B 的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.【解答】解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选:B.11.(4分)下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.【解答】解:A、球的主视图、左视图与俯视图均是圆形,故本选项符合题意;B、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故本选项不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,故本选项不符合题意;D、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,故本选项不符合题意.故选:A.12.(4分)湘西土家族苗族自治州6月2日至6月8日最高气温(℃)统计如下表:则这七天最高气温的中位数为()A.25℃B.27℃C.28℃D.30℃【分析】首先把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答即可.【解答】解:将这组数据从小到大的顺序排列(25,25,27,28,28,30,32),处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28,故选:C.13.(4分)下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0D.x 2﹣2x﹣3=0【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.14.(4分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C.4.88 D.4.89【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.15.(4分)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.16.(4分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD的度数,根据三角形的外角的性质计算得到答案.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.17.(4分)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B.C.D.【分析】根据k、b的符号确定直线的变化趋势和与y轴的交点的位置即可.【解答】解:∵k>0,∴一次函数y=kx﹣b的图象从左到右是上升的,∵b<0,一次函数y=kx﹣b的图象交于y轴的正半轴,故选:A.18.(4分)下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【分析】根据确定圆的条件对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据正方形的判定方法对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一组对边平行且另一组对边也平行的四边形是平行四边形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分且相等的四边形是正方形,所以D选项正确.故选:D.三、解答题(本大题共8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(5分)计算:32﹣20150+tan45°.【分析】分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.【解答】解:原式=9﹣1+1=9.20.(5分)解不等式组,并把解集在数轴上表示出来.【分析】首先根据解一元一次不等式组的方法,求出不等式组中每个不等式的解集;然后找出每个不等式的解集的公共部分,求出不等式组的解集;最后把不等式组的解集在数轴上表示出来即可.【解答】解:∵,∴∴﹣1≤x≤3,把不等式组的解集在数轴上表示出来为:.21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.22.(8分)如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.23.(8分)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.【分析】(1)由总人数结合条形统计图求出a与b的值即可;(2)补全条形统计图,如图所示;(3)求出“重视课外阅读名著”的初中生人数占的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:b=5,a=50﹣(15+5)=30;(2)补全条形统计图,如图所示:(3)根据题意得:2000×=1200(人),则该校“重视课外阅读名著”的初中生人数约有1200人.24.(8分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.25.(12分)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【分析】(1)过点A作AH⊥OD于点H,可求得AH的长为60km,由60>50可知,不会受到台风影响;(2)过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:(1)作AH⊥OC,易知台风中心O与A市的最近距离为AH的长度,∵由题意得:∠HOA=45°,OA=60km,∴AH=HO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.26.(24分)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)先由直线AB的解析式为y=﹣x+3,求出它与x轴的交点A、与y 轴的交点B的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=,PA=3﹣t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;(3)设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q 的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t ﹣t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;(4)设运动时间为t秒,则OP=t,BQ=(3﹣t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.【解答】解:(1)∵y=﹣x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3),将A(3,0),B(0,3)代入y=﹣x2+bx+c,得,解得∴抛物线的解析式为y=﹣x2+2x+3;(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=1;如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=.综上所述,当t=1或t=时,△PQA是直角三角形;(3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2.∵EP∥FQ,EF∥PQ,∴EP=FQ.即:3﹣t=3t﹣t2.解得:t1=1,t2=3(舍去).将t=1代入F(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),得点F的坐标为(2,3).(4)如图④所示:设运动时间为t秒,则OP=t,BQ=(3﹣t).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M的坐标为(1,4).∴MB==.当△BOP∽△QBM时,即:,整理得:t2﹣3t+3=0,△=32﹣4×1×3<0,无解:当△BOP∽△MBQ时,即:,解得t=.∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.。
2015年全国中考数学试卷解析分类汇编专题28+解直角三角形一.选择题1.(2015•衡阳,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.1012.(2015•聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A. 34米B. 38米C. 45米D. 50米3. (2015•温州第8题4分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C 作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=B. y=C. y=2D. y=34.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B.3 C. 4 D.55.(2015•山东泰安,第14题3分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里6.(2015•长沙,第11题3分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米二.填空题1.(3分)(2015•宁夏)(第16题)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.2.(2015•青海西宁第18题2分)某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A 处测得蒲宁之珠最高点C 的仰角为45°,再往蒲宁之珠方向前进至点B 处测得最高点C 的仰角为56°,AB=62m ,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD 约为 ______ m .(sin56°≈0.83,tan56°≈1.49,结果保留整数)3.(2015•宁夏第16题3分)如图,港口A 在观测站O 的正东方向,OA=4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为_______.4.(2015年重庆B 第18题4分)如图,AC 是矩形ABCD 的对角线,AB=2,BC=,点E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=______.5.(2015•营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为 cm 2.2318题图E6.(2015•营口,第17题3分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.7.(2015•山东德州,第16题4分)如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)9.(2015•滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.10.(2015•东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是200+200米.11. (2015年陕西省,13,3分)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).12.(2015江苏常州第16题2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是_______________.三.解答题1.(2015•湖北,第22题6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.2.(2015•安徽,第18题8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).m)3.(2015•鄂州,第21题9分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)4.(2015•海南,第22题9分)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)5.(2015•湘潭,第19题6分)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)6.(2015•聊城,第24题10分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E .(1)求证:AB=BE ;(2)若PA=2,cosB=,求⊙O 半径的长.7. (2015江苏常州第25题8分)如图,在四边形ABCD 中,∠A =∠C =45°,∠ADB =∠ABC =105°.⑴若AD =2,求AB ;⑵若AB +CD =23+2,求AB .8.(2015年四川省达州市中考,21,7分)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB ,其测量步骤如下:(1)在中心广场测点C 处安置测倾器,测得此时山顶A 的仰角∠AFH=30°;C(2)在测点C 与山脚B 之间的D 处安置测倾器(C 、D 与B 在同一直线上,且C 、D 之间的距离可以直接测得),测得此时山顶上红军亭顶部E 的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD 之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB .(取1.732,结果保留整数)9.(2015年四川省广元市中考,20,8分)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长度均为0.8米的不锈钢架杆AD 和BC (杆子的低端分别为D 、C ),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC 的长).10.(2015年浙江省义乌市中考,20,8分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
2015-2016学年九年级数学上期末试卷一、选择题(每小题3分,共30分)1.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的 取值范围是 ( ) A. k>-1 B. k>1 C. k ≠0 D. k>-1且k ≠02.对于函数y=-5x,下列说法错误的是( ) A.它的图象分布在二、四象限 B.它的图象既是轴对称图形又是中心对称图形 C.当x >0时,y 的值随x 的增大而增大 D.当x <0时,y 的值随x 的增大而减小3. 在Rt △ABC 中,∠ C =90°,若BC =1,ABtan A 的值为 ( )ABC .12D .2 4.如图1,在正方形网格上有6个三角形:①△ABC ,②△BCD ,③△BDE ,④△BFG ,⑤△FGH ,⑥△EFK .其中②~⑥中,与 三角形①相似的是( ) A .②③④ B .③④⑤ C .④⑤⑥ D .②③⑥ 5.某校为了解八年级学生每周课外阅读情况,随机调查了50名 八年级学生,得到他们在某一周里课外阅读所用时间的数据, 并绘制成频数分布直方图,如图所示,根据统计图,可以估计 在这一周该校八年级学生平均课外阅读的时间约为( ) A.2.8小时 B.2.3小时 C.1.7小时 D.0.8小时 6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,c=10,则下列不正确的是( ) A.∠B=60° B.a=57. 如图,在Rt △ABC 中,∠A CB =90°,CD ⊥AB ,垂足为D . 若ACBC =2,则sin ∠ACD 的值为( )A .23BCD8.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,则下列结论不一定成立的是( )A.AD=BC ′B.∠EBD=∠EDBC.△ABE ∽△CBDD.sin ∠ABE=AEED9.如图,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是( ) A .∠FAE=∠D B .FA ∶CD=AE ∶BC C .FA ∶AB=FE ∶EC D .AB=DC10、某班同学毕业时都将自己的照片向全班其它同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x +1)=1035 B.x(x -1)=1035×2 C.x(x -1)=1035 D.2x(x +1)=1035二、填空题(本大题共8个小题,每小题3分,共24分)11.已知变量y 与x-2成反比例,当x=3时,y=-3,当y=3时,x 的值是 .12.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:m 3.13.如图,以O 为位似中心,把五边形ABCDE 的面积扩大为原来的4倍,得五边形A 1B 1C 1D 1E 1,则OD ∶OD 1= .14.反比例函数y=kx的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,那么k 的值是 . 15.当x= 时,代数式x 2+4x 的值与代数式2x+3的值相等. 16.某公司4月份的利润为160万元,要使6月份的利润达到250万元, 则平均每月增长的百分率是 .17.如图,梯形护坡石坝的斜坡AB 的坡度为1∶3,坡高BC 为2米, 则斜坡AB 的长为 米.18.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,下列结论:①∠BAE=30°;②△ABE ∽△ECF ;③AE ⊥EF ;④△ADF ∽△ECF.其中正确结论是 (填序号).三、解答题(共66分) 19.(15分)解下列方程:(1)2(x-5)=3x(x-5); (2)x 2-2x-3=0.(3)计算:1001()(201543022sim ---+--20.(6分)游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2 000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题: (1)这次抽样调查中,共调查了400名学生; (2)补全两个统计图;(3)根据抽样调查的结果,估算该校2 000名学生中大约有多少人“一定会下河游泳”?21.(9分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A 在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.(12分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.23.(12分)如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=14 DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.24.(12分)如图所示,在△ABC中,∠C=90°,AC=6 cm,BC=8 cm,点P从点A出发沿边AC 向点C以1 cm/s的速度移动,点Q从C点出发沿CB边向点B以2 cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8 cm2?(2)若点P从点A出发沿边AC-CB向点B以1 cm/s的速度移动,点Q从C点出发沿CB-BA 边向点A以2 cm/s的速度移动.当点P在CB边上,点Q在BA边上时,是否存在某一时刻,使得△PBQ的面积为14.4 cm2?参考答案一、1. D ; 2、.D ;3、C ; 4、B ; 5、B ; 6、D ; 7、D ; 8、C 9、B ;10、C ;二、11、1; 12.130; 13.1∶2 14.-4 15、-3或1 16、25%;17 18.②③三、19.(1)x 1=5或x 2=23. (2) x 1=3,x 2=-1.(3)120.(1)400;(2)“一定不会”的人数为400×25%=100(名),“家长陪同时会”的百分率为1-25%-12.5%-5%=57.5%,图略. (3)根据题意得:2 000×5%=100(人).答:该校2 000名学生中大约有100人“一定会下河游泳”. 21.过点A 作AD ⊥BC 于D ,根据题意得∠ABC=30°,∠ACD=60°, ∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB. ∵CB=50×2=100(海里),∴CA=100(海里),在直角△ADC 中,∠ACD=60°,∴CD=12AC=12×100=50(海里).故船继续航行50海里与钓鱼岛A 的距离最近.22.(1)由A(-2,0),得OA=2.∵点B(2,n)在第一象限内,S △AOB =4,∴12OA·n=4,∴n=4,∴点B 的坐标是(2,4).设该反比例函数的解析式为y=ax(a ≠0),将点B 的坐标代入, ∴反比例函数的解析式为y=8x.设直线AB 的解析式为y=kx+b(k ≠0),将点A ,B 的坐标分别代入,得 ∴直线AB 的解析式为y=x+2;(2)在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2),∴OC=2.∴S △OCB =12OC×2=12×2×2=2.23.(1)∵DF AE DE AB ==12,即AB AEDE DF=,又∠A =∠D =90°,∴△ABE ∽△DEF ;(2)∵∠D =∠FCG =90°,∠DFE =∠CFG ,∴△DEF ∽△CGF ,∴DE DFCG CF==13,∴CG =3DE =3×42=6,∴BG =BC+CG =4+6=10.24.(1)设x s 后,可使△PCQ 的面积为8 cm 2.由题意得,AP=x cm ,PC=(6-x)cm ,CQ=2x cm ,则12·(6-x)·2x=8.解得x 1=2,x 2=4.答:P 、Q 同时出发,2 s 或4 s 后可使△PCQ 的面积为8 cm 2. (2)过点Q 作QD ⊥BC 于D ,∵∠C=90°,AC=6 cm ,BC=8 cm ,∴AB=10 cm.∵点P 从点A 出发沿边AC-CB 向点B 以1 cm/s 的速度移动,点Q 从C 点出发沿CB-BA 边向点A 以2 cm/s 的速度移动,∴BP=(6+8)-t=(14-t)cm ,BQ=(2t-8)cm.∵QD ⊥BC ,∠C=90°,∴QD ∥AC ,∴BQ QDBA AC=,∴28106t QD -=.∴QD=6245t -.∴S △PBQ =12×BP·QD=12×(14-t)×6245t -=14.4.解得t 1=8,t 2=10(不符题意舍去).答:当t=8秒时,△PBQ 的面积是14.4 cm 2.。
湖南省衡南县2015届九年级数学省市重高直招考试试题试卷说明:1、时间:90分钟,满分:120分。
2、答案必须..写在答题卷上相应的地方,写在试卷上无效。
3、不能..使用计算器。
一、选择题(每小题5分,共30分)。
1.64-).A. 7-B. 1-或7-C.13-或5D. 52.有5条线段长度分别为1, 3,4,5,7,从中任取三条为一组,它们一定能构成三角形的频率为( ). A .0.15 B .0.10 C .0.20 D .0.303.已知边长为1的正方形ABCD 中,E 为CD 的中点,动点P 在正方形ABCD 边上沿E C B A →→→运动.设点P 经过的路程为x .APE ∆的面积为y .则y 与x 的函数图象大致为图中的( ).4.方程7920122014x x x x -+-=-+的解有( )个.A .0B .1 D .多于2个5.对任意两实数a 、b ,定义运算“*”如下:⎪⎩⎪⎨⎧<+≥=*)()(b a b b b a b b a a a . 根据这个规则,则方程x *2=9的解为( ).A .3-B .2137-C .3-或2137- D .3或 6. 当三个非负实数x 、y 、z 满足关系式323=++z y x 与433=++z y x 时,z y x M 423+-=的最小值和最大值分别是( ).A .1,67-B .1,76-C .1,85D .1,38-二、填空题(每小题5分,共30分)。
7.22(3)9x m x m -++=是一个多项式的平方,则 ________________. 8. 如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”, 则半径为2的“等边扇形”的面积为________________. 9. 如图是由9个等边三角形拼成的六边形,若已知中间的小 等边三角形的边长是2,则六边形的周长是_________.3题图第9题图10. 如图一副直角三角板放置,点C 在FD 的延长线上, AB ∥CF ,∠F =∠ACB =90°,AC =5,CD 的长 .11. 在形如N a b=的式子中,我们已经研究过两种情况:①已知a 和b ,求N ,这是乘方运算;②已知b 和N ,求a ,这是开方运算;现在我们研究第三种情况:已知a 和N ,求b ,我们把这种运算叫做对数运算。
定义:如果N ab=(a >0,a≠1,N >0),则b 叫做以a 为底N 的对数,记作: N b a log =,例如:求2log 8,因为32=8,所以2log 8=3;又比如∵32-=18,∴ 182log 3=-.(1)根据定义计算:(本小题每空1分)①81log 3= ;②10log 1= ;③如果416log =x ,那么x = 。
(2)设,,N a M a y x ==则y N x M a a==log ,log (a >0,a≠1,M 、N 均为正数),∵y x y x a a a +=⋅,∴N M a yx ⋅=+ ∴y x MN a+=log , 即N M MN a a a log log log +=这是对数运算的重要性质之一,进一步,我们还可以得出:123log .......a n M M M M = .(其中M 1、M 2、M 3、……、M n 均为正数,a >0,a≠1)(本小题2分)12.已知a ,b ,c为实数,且14a b ++=,则23a b c +-= .三、解答题(共60分)13.(8分)为迎接国庆64周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:注意:除第二问直接画图外,其他三问答题时都要有简要说明。
(1)表中m 和n 所表示的数分别为:m =___________,n =____________; (2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段; (4)如果比赛成绩90分以上(含90分)可以获得奖励,那么获奖率是多少?14.(12分)为实现区域教育均衡发展,我市计划对某县A 、B 两类薄弱学校全部进行改造,根据预算,共需资金1575万元,改造一所A 类学校和两所B 类学校共需资金230万元;改造两所A 类学校和一所B 类学校共需资金205万元.问:(1)改造一所A 类学校和一所B 类学校所需的资金分别是多少万元?(2)我市计划今年对该县A 、B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担。
若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所10万元和15万元。
请你通过计算求出有哪几种改造方案?15.(12分)在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏――幸运大转盘,其规则如下:①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢。
现有甲、乙两位选手进行游戏,请解答以下问题:(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.16. (14分)已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,我们称这个正方形为此函数图像的“伴侣正方形”. 例如:在图1中,正方形ABCD 是一次函数1y x =+图像的其中一个“伴侣正方形”. (1)如图1,若某函数是一次函数1y x =+,求它的图像的所有“伴侣正方形”的边长; (2)如图2,若某函数是反比例函数ky x=(0)k >,它的图像的“伴侣正方形”为ABCD ,点(2,)D m (2)m <在反比例函数图像上,求m 的值及反比例函数的解析式。
17. (14分)如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E .(1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.数学答案一、选择题(每小题5分,共30分) 1---6 B D A B C B二、填空题(每小题5分,共30分)7. -6,0 8. 2 9. 60 10.235215- 11.(1)①4,②0,③2,(2)++21log log M M a a …+n a M log 12. 0三、解答题(共60分))根据中位数的求法,先将数据按从小到大的顺序排列,14.(12分)答案:(1)解:设改造一所A 类和一所B 类学校所需资金分别为x 万元和y 万元由题意得22302205x y x y +=+={…………………………4分解得6085x y =={……………………………………………6分第17题A BCDEF答:改造一所A 类学校和一所B 类学校所需资金分别为60万元和85万元。
(2)设今年改造A 类学校x 所,则改造B 类学校(6-x )所,由题意得:5070(6)4001015(6)70x x x x +-≤+-≥{…………………………10分 解得 14x ≤≤∵x 取整数∴ x=1,2,3,4.即共有四种方案,即改造A 类学校1所,B 类学校5所;改造A 类学校2所,B 类学校4所; 改造A 类学校3所,B 类学校3所;改造A 类学校4所,B 类学校2所…………12分 15. (12分)答案:解:(1)甲可取5、10、15、20、25、30、35,……………………2分∴P (不爆掉)=207…………………………………………………………4分 (2)乙有可能赢,…………………………………………………………………5分乙可取5、10、15,…………………………………………………………6分P (乙赢)=203…………………………………………………………………8分 (3)甲选择不转第二次. …………………………………………………………9分 理由是:甲选择不转第二次,乙必须选择旋转第二次,此时P (乙赢)=203,∴乙获胜的可能性较小.………………………12分 (或“甲若选择转第二次,P (甲爆掉)=2017,∴甲输而乙获胜的可能性较大.”………………………………………………………………(12分)16. (14分)答案:解:(1)(I )如图1,当点A 在x 轴正半轴、点B 在y 轴负半轴上时:正方形ABCD………………………………………………(2分) (II )当点A 在x 轴负半轴、点B 在y 轴正半轴上时:设正方形边长为a,易得3a =,………………………………………(4分)解得3a =,此时正方形的边长为3………………………………(6分) ∴所求“伴侣正方形”…………………………(7分)(2)如图2,作DE ⊥x 轴,CF ⊥y 轴,垂足分别为点E 、F , 易证△ADE ≌△BAO ≌△CBF .………………………(8分) ∵点D 的坐标为(2,)m ,2m <,∴DE = OA = BF = m , ∴OB = AE = CF = 2 - m .∴OF = BF + OB = 2,∴点C 的坐标为(2,2)m -.………………………(10分)(第16题图2)(第16题图1)∴22(2)m m =-,………………………(12分)解得1m =.…………………………………………………………………(13分) ∴反比例函数的解析式为2y x=.…………………………………………(14分) 17.(14分)(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线 ∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S .由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .A B C D E F G。