误差分析 热敏电阻
- 格式:doc
- 大小:128.00 KB
- 文档页数:2
热敏电阻温度计设计实验报告热敏电阻温度计设计实验报告引言:温度是我们日常生活中非常重要的一个物理量,它直接影响着我们的生活质量和健康状况。
因此,准确测量温度是科学研究和工程应用中的一个重要问题。
本文将介绍热敏电阻温度计的设计实验,通过实验验证其温度测量的准确性和稳定性。
一、热敏电阻的原理热敏电阻是一种电阻值随温度变化而变化的电阻元件。
其工作原理是基于材料的温度系数,即温度变化会导致材料电阻值的变化。
常见的热敏电阻材料有铂、镍、铜等。
在本实验中,我们选用了铂作为热敏电阻材料。
二、实验装置本实验使用了以下装置和元件:1. 热敏电阻:选用了铂热敏电阻,具有较高的灵敏度和稳定性。
2. 恒流源:为了保证热敏电阻上的电流恒定,我们使用了一个恒流源。
3. 电压表:用于测量热敏电阻两端的电压。
4. 温度控制装置:通过控制加热电流的大小,来控制热敏电阻的温度。
三、实验步骤1. 将热敏电阻连接到恒流源上,并将电压表连接到热敏电阻的两端。
2. 打开恒流源,并调整电流大小,使热敏电阻上的电流保持恒定。
3. 打开温度控制装置,并设置所需的温度。
4. 等待一段时间,直到热敏电阻的温度稳定下来。
5. 使用电压表测量热敏电阻两端的电压,并记录下来。
6. 将温度控制装置的温度调整到其他值,重复步骤4和5。
7. 根据测量结果绘制出热敏电阻的电阻-温度曲线。
四、实验结果与分析根据实验数据,我们绘制了热敏电阻的电阻-温度曲线。
从曲线可以看出,热敏电阻的电阻值随温度的升高而增加。
这符合热敏电阻的特性。
在实验中,我们还发现热敏电阻的灵敏度较高,即单位温度变化引起的电阻变化较大。
这使得热敏电阻在温度测量领域有着广泛的应用。
此外,我们还测试了热敏电阻的稳定性。
通过多次测量同一温度下的电压值,我们发现其变化范围较小,表明热敏电阻具有较好的稳定性。
五、实验误差分析在实验过程中,可能存在一些误差来源,如电流源的漂移、电压表的测量误差等。
这些误差可能会对实验结果产生一定的影响。
误差分析-热敏电阻(总2页) 热敏电阻是一种对温度敏感的电阻元件,其电阻值随着温度的变化而变化。
在实际应用中,热敏电阻的电阻值与温度之间的关系往往需要进行误差分析,以便更好地控制和使用热敏电阻。
下面就误差分析进行详细阐述。
一、误差来源热敏电阻的误差来源主要包括以下几个方面:1.灵敏度误差:热敏电阻的电阻值与温度之间的关系往往是非线性的,这导致热敏电阻在测量温度时会产生误差。
这种误差通常比较大,需要通过电路补偿或温度校准来减小。
2.长期稳定性误差:热敏电阻在使用过程中,其电阻值会随着时间的推移而发生变化,这主要是由于电阻材料的热稳定性差所导致的。
这种误差需要在产品设计阶段进行考虑,通过选用稳定性更好的电阻材料或进行温度补偿来减小。
3.互换性误差:不同厂家生产的热敏电阻即便型号相同,其电阻值与温度之间的关系也会存在一定的差异。
因此,在选用热敏电阻时,需要注意不同厂家之间的产品差异,尽量选择品质稳定、一致性好的厂家。
4.测量电路误差:热敏电阻需要使用测量电路来测量其电阻值,而测量电路往往会引入一些误差。
例如,测量电路的灵敏度误差、线性误差和噪声等都会影响热敏电阻的测量结果。
因此,需要选用精度高、稳定性好的测量电路。
二、误差分析和补偿方法为了减小热敏电阻的误差,需要进行误差分析和补偿。
以下是一些常用的误差补偿方法:1.线性化补偿:将热敏电阻的非线性特性转化为线性特性,可以通过在测量电路中引入适当的反馈电阻和运算放大器来实现。
这种补偿方法能够有效地减小灵敏度误差和互换性误差。
2.温度校准:通过在已知温度下对热敏电阻进行校准,可以消除长期稳定性误差和互换性误差。
温度校准可以在生产过程中完成,也可以在使用过程中进行。
3.平均处理:通过对同一热敏电阻在不同时间或不同位置的测量结果取平均值,可以减小测量电路误差和环境因素对测量结果的影响。
4.采用更高精度的测量电路:选用精度更高、稳定性更好的测量电路可以提高热敏电阻的测量精度。
热敏电阻温度特性的研究一、实验目的:了解和测量热敏电阻阻值与温度的关系二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理热敏电阻是其电阻值随温度显著变化的一种热敏元件。
热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。
PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。
适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。
热敏电阻的电阻-温度特性曲线如图1所示。
图1NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。
与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点:1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量;3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制;4.制造工艺比较简单,价格便宜。
半导体热敏电阻的缺点是温度测量范围较窄。
NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示)/exp(T B A R T = (1)式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。
由式(1)可得到当温度为0T 时的电阻值R ,即)/exp(00T B A R = (2)比较式(1)和式(2),可得)]11(exp[00T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为T 时的电阻值R ,就可以利用式(3)计算在任意温度T 时的T R 值。
一、实验目的1. 理解不同温度测量原理的基本概念。
2. 掌握热电偶、热敏电阻和热电阻等常用温度传感器的测温原理。
3. 学习温度传感器的标定方法。
4. 通过实验,验证理论知识的正确性,并分析实验误差。
二、实验原理温度测量原理主要分为接触式测量和非接触式测量两种。
本实验主要探讨接触式测量原理,包括以下几种:1. 热电偶测温原理:热电偶是由两种不同金属导线组成的闭合回路,当热电偶两端存在温度差时,会在回路中产生热电势,热电势与温度呈线性关系。
2. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,通过测量电阻值,可以间接测量温度。
3. 热电阻测温原理:热电阻的电阻值随温度变化而变化,通过测量电阻值,可以间接测量温度。
三、实验器材1. 热电偶(K型、E型)2. 热敏电阻3. 热电阻4. 温度传感器实验模块5. CSY2001B型传感器系统综合实验台6. 温控电加热炉7. 连接电缆8. 万用表:VC9804A,附表笔及测温探头9. 万用表:VC9806,附表笔四、实验步骤1. 热电偶测温实验:(1)将K型热电偶和E型热电偶分别连接到实验模块上。
(2)将热电偶的热端放入已知温度的恒温水中,记录冷端温度和对应的热电势。
(3)根据热电偶分度表,计算实际温度。
2. 热敏电阻测温实验:(1)将热敏电阻连接到实验模块上。
(2)逐渐改变热敏电阻周围的温度,记录电阻值和对应温度。
(3)根据电阻温度系数,计算实际温度。
3. 热电阻测温实验:(1)将热电阻连接到实验模块上。
(2)逐渐改变热电阻周围的温度,记录电阻值和对应温度。
(3)根据电阻温度系数,计算实际温度。
五、实验结果与分析1. 热电偶测温实验:实验结果显示,K型热电偶和E型热电偶的测量值与实际温度基本一致,误差在允许范围内。
2. 热敏电阻测温实验:实验结果显示,热敏电阻的测量值与实际温度基本一致,误差在允许范围内。
3. 热电阻测温实验:实验结果显示,热电阻的测量值与实际温度基本一致,误差在允许范围内。
功能材料—PTC热敏陶瓷制备与性能的综合实验一、实验目的通过实验,使学生加深对“电子信息材料专业方向”中有关基础理论知识的理解。
1.了解PTC热敏陶瓷制备原理及方法2.使学生熟练掌握PTC电阻的测试方法二、实验原理PTC效应与许多因素有关,PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。
也可以说,PTC(positive temperature coefficient) 电阻是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻或材料。
当PTC 陶瓷元件接通电源后,电流将随电压的升高而迅速增加,达到居里温度时,电流达到最大值,这时PTC 陶瓷元件进入PTC 区域,此时当电压继续升高时,由于PTC 陶瓷元件的电阻急剧增大,电流反而减小。
纯BaTiO3陶瓷是良好的绝缘体,是一种优良的陶瓷电容器材料,也是一种典型的钙钛矿型结构的铁电材料。
纯的BaTiO3在常温下几乎是绝缘的,电阻率大于1012Ω•cm,通过不等价取代在BaTiO3中掺杂微量的元素后,会使其性能发生变化,出现PTC效应,并且伴随着室温电阻率的大幅度下降。
制成的钛酸钡基PTC 陶瓷具有较大的正温度系数和开关阻温特性,通过掺杂,它的居里温度可在很宽的范围内(室温~400 ℃) 任意调节,所以,在航空航天、电子信息通讯、自动控制、家用电器、汽车工业、生物技术、能源及交通等领域,它得到了广泛的应用。
钛酸钡基PTC 陶瓷的组成:(1)移峰剂——添加后能够移动居里点(BaTiO3瓷120o C)添加物与主晶相形成固溶体使铁电陶瓷的特性在居里温度处出现的峰值发生移动的现象,称为移峰效应。
居里温度通常满足以下经验公式:t c =tc1(1-x)+tc2x(x-摩尔分数)该添加物称为移峰剂。
PTC 陶瓷中常用钙钛矿型铁电体的移峰剂有两种:钛酸铅、PbTiO3(490℃)、钛酸锶SrTiO3(-250℃)。
热敏电阻测温校准热敏电阻是一种温度传感器,它的电阻值随着温度的变化而变化。
热敏电阻可以广泛应用于温度测量、温度控制、温度补偿等领域。
然而,在应用过程中,由于热敏电阻的特性受到环境因素的影响,如湿度、空气流动等,会导致测温不准确。
因此,对热敏电阻进行校准是非常重要的。
热敏电阻的测温校准主要有两个目的:一是确定热敏电阻的标定温度与实际温度之间的关系,二是确定热敏电阻的测温误差。
校准的主要步骤包括选择标准温度源、进行多点标定、绘制校准曲线以及计算测温误差等。
首先,选择一个可靠可信的稳定的标准温度源是校准的基础。
标准温度源应具备以下特点:稳定性好、精度高、稳态温度快。
常见的标准温度源有干燥冰点、高纯水三相平衡点、金属熔点等。
其次,进行多点标定是校准的关键。
多点标定即在不同温度下分别测量热敏电阻的电阻值,并与标准温度源的实际温度进行对比。
根据测得的电阻值和实际温度值,建立校准数据表。
多点标定可以提高校准的准确性和可靠性。
然后,绘制校准曲线是校准的重要内容。
校准曲线是用于计算实际温度的关键工具。
根据校准数据表中的电阻和实际温度值,利用数学方法,如拟合曲线、插值法等,得到热敏电阻的校准曲线。
校准曲线可以用于将热敏电阻的电阻值转化为实际温度值,从而减小测温误差。
最后,计算测温误差是校准的总结和评估。
测温误差是热敏电阻测量温度与实际温度之间的差异。
通过对测温误差的计算和分析,可以评估热敏电阻的测温准确性,找出误差源,并采取相应的措施来改善测温精度。
总的来说,热敏电阻的测温校准是非常重要的。
通过选择标准温度源、进行多点标定、绘制校准曲线以及计算测温误差等步骤,可以提高热敏电阻的测温准确性和可靠性。
同时,还可以找出误差源,并采取相应的措施来改善测温精度。
对于热敏电阻的应用领域来说,准确的测温是保证温度控制和温度补偿的基础,因此,热敏电阻的测温校准是非常关键的。
热敏电阻噪声分析摘要:为了测量热敏电阻的动态噪声误差,并减小噪声,可在传感器的输出端串接一个动态环节。
该环节本质上是一个带通或高通滤波器,动态环节的增加将引起严重的噪声放大,影响测量系统的精度。
研究了在噪声环境下,改善热敏电阻传感器的动态特性的方法,该方法在采用实验数据得到系数的同时,采用多项式预测滤波和中值滤波相结合的方法减小测量系统的噪声。
仿真实验验证了该方法的有效性。
关键词:热敏电阻;噪声;误差分析Thermistor noise analysisAbstract: In order to compensating thermistor dynamic measurement error, a dynamic compensation block is employed. The block is a band-pass filter or a high-pass filter in essence, thereby the block causes severe noise amplification, and the accuracy of measurement system is infected. The thermistor dynamic measurement error compensating with reducing noise disturbance is studied The coefficient of the block is obtained via experimental data, at the same time a method that combines polynomial prediction filter and median filter and median filter for the noise attenuation is introduced. The simulation results show that the dynamic compensation method is valid.Key word: Thermistor; Noise; Error analysis1. 引言热敏电阻作为测温传感器,具有成本低、接口简单、输出信号大等优点,在点温或温限控制系统中有广泛的应用。
• 35•热敏电阻最核心的问题是阻值随温度变化关系的确认,这是热敏电阻能够开展应用的前提。
本文采用负温度系数的半导体热敏电阻为研究对象,实验发现,阻值随温度的变化有一定的滞后性。
由于材料的滞后效应,测量结果与参考值有很大的偏差。
为了减小实验测量误差,采用升温和降温各测量一次,然后求平均值的方法,其测量结果与参考值吻合的很好,其材料参数值的相对误差大大减小,说明采用这种测量方法一定程度的消除了由于滞后性带来的系统误差。
这种消除实验误差的方法在类似的实验中也有一定的借鉴参考作用。
热敏电阻是其电阻值随温度变化非常敏感的电阻灵敏元件,不同的温度下呈现出不同的电阻值。
按照温度系数不同,可以将热敏电阻分为正温度系数热敏电阻器和负温度系数热敏电阻器。
正温度系数热敏电阻器在温度越高时电阻值越大,常见的正温度系数电阻是BaTiO3、SrTiO3或PbTiO3为主要成分的烧结体;负温度系数热敏电阻器在温度越高时电阻值越小,该电阻材料是一些金属氧化物的半导体材料(李小龙,热敏电阻的分类、特性与应用研究:科技展望,2016)。
热敏电阻由于灵敏度较高、工作温度范围宽,还有体积小、使用方便、稳定性好等特点,在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。
本文从热敏电阻阻值随温度变化的滞后性出发,探讨该滞后性对热敏电阻的温度特性研究产生的系统误差。
为了一定程度减小该实验误差的影响,采用升温和降温各测量一次的方法,实验结果发现:利用该方法可以有效的减小由于滞后性引起的系统误差。
1 半导体热敏电阻的电阻-温度特性实验表明,在一定温度范围内,半导体材料的电阻率ρ和绝对温度T的关系可表示为(何佳清,霍剑青,大学物理实验与综合物理实验:高等教育出版社,2018):(1)其中常数A1、B与材料的物理性质有关(徐海英,董慧媛,刘英,等.NTC热敏电阻B常数:电子器件,2004),T取绝对温度。
对于截面均匀的热敏电阻,其电阻值R T 可以根据电阻定律写为:(2)式中l为两电极间距离,s为热敏电阻的横截面。
电子温度计的设计及其测量误差分析摘要:由于工业生产等许多领域正在向精度和自动化转变,实现高精度和低能耗的仪表将占据更大的市场份额,并广泛应用于生产和生活领域。
本文对电子温度计的设计及实测误差分析进行了研究。
关键词:电子温度计;设计;测量;误差分析当今,许多现代技术渗透到我们的生活中,电子测量在我们的生活中无处不在。
用电子设备测量的结果对许多人带来便利。
一、电子温度计硬件系统1.选择单片机。
电子温度计的功能在很大程度上取决于选择单片机。
适当的单片机可以利用其基本功能来提高系统的效率和可持续性。
此外,造价应考虑到成本和质量的统一。
如单片机MSP430是一款低功耗混合信号处理器。
它可用于便携式仪器设计,并允许根据需要完全集成模拟电路、微处理器和数字电路。
2.供电电路。
由于现场系统没有供电,因此必须设计单片机系统的功耗,以确保电子温度计的稳定性。
降低电源电压,并确保基本系统运行正常。
本研究选择的系统电源电压为4.5v。
3.温度信息采集模块。
该单元的设计充分考虑了温度计的范围和环境要求。
热敏电阻可用于支持,这种优势是显而易见的。
强度值随温度变化。
设计要求相对简单,能耗更低,非常适合于设计成本较低的集成电路。
但是,重要的是要了解,由于精度问题和响应率低,热敏电阻在温度采集模块电路设计中的应用必须导致在测试环境需要非常精确的温度精度时更换原始电阻。
MSP430由于电阻值特性,采用斜率技术测量。
该测量方法比A/D技术更容易操作。
在实践中,信号变换可以通过将时钟集成到芯片中并进行比较来实现。
该温度测量电路是基于使用MSP430芯片在寄存器上电容充放电捕获时间的转换。
该时间值由反映温度变化的测量强度确定。
要提高捕捉时间测量的阻力值和精度,必须定义参照(Rref)电阻来校准测量的阻力(Rsens)。
系统运行时,首先将控制器连接到Rref端口并进行配置。
4.模块显示。
指的是用户界面的可用性。
必须充分考虑数据的外观和成本,以确保数据列在正确的列中。
用非平衡电桥研究热敏电阻
摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法,并分析其优势。
关键词:非平衡电桥,直线拟合 1 热敏电阻
热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。
本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。
其电阻温度特性的通用公式为:
T B T Ae R = (1)
式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。
将式(l)两边取对数,可得:
T
B
A R T +=ln ln (2)
由实验采集得到T R T -数据,描绘出T
R T 1
-
ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。
2 平衡电桥
电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电
测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。
在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下:
在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知
1
2
3
R R R R x
=.在实验时,调节1R 和2R 均为1000欧姆。
则x R 的值即为3R 的值。
3
非平衡电桥原理
图1
非平衡电桥的原理图如图1所示。
非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。
非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。
再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。
由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。
4 实验条件的确定
当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x
R 的关系。
桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。
根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R
E
R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-=
5 用非平衡电桥测电阻的实例
已知:微安表量程Ig=100μA ,精度等级f=1.0级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig 100.0 95.1
89.0 83.0
77.0 70.0 62.0 54.0 46.1 39.2 32.1 25.8 18.9 11.8 T 373 368 363
358
353 348 343 338 333 328 323 318 313 308 Rt
951
1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398
1/T 2.68 2.72 2.76 2.79 2.83 2.87 2.92 2.96 3.00 3.05 3.10 3.15 3.20 3.25 lnR 6.86 6.94
7.04 7.14
7.23
7.34
7.47
7.59
7.72
7.84
7.96
8.21
8.29
8.39。