中考第一轮复习与专题训练(一)实数
- 格式:doc
- 大小:721.73 KB
- 文档页数:10
实数运算1、(2013•衡阳)计算的结果为( )A .B .C . 3D . 5 考点: 二次根式的乘除法;零指数幂.专题: 计算题.分析: 原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答: 解:原式=2+1=3.故选C点评: 此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.2、(2013•常德)计算+的结果为( )A . ﹣1B . 1C . 4﹣3D . 7 考点: 实数的运算.专题: 计算题.分析: 先算乘法,再算加法即可.解答: 解:原式=+=4﹣3=1.故选B .点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D 。
4、(2013台湾、6)若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者?( )A .1300B .1560C .1690D .1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题分析:本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣=﹣1.故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.6、(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.7、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0=2.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.解答:解:原式=2﹣1+1=2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.8、(2013•黔西南州)已知,则a b=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 . 考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答: 解:原式=3﹣1﹣4×+2=2.故答案为:2.点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等知识点,属于基础题.11、(2013•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答: 解:∵(±5)2=25∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。
湖南省2023年中考备考数学一轮复习 实数 练习题一、单选题1.(2022·湖南长沙·模拟预测)下列说法错误的是() A .1的平方根是1± B .-1是1的平方根 C .1是1的平方根D .-1的平方根是12.(2022·湖南常德·统考中考真题)在3317π,2022这五个数中无理数的个数为( ) A .2B .3C .4D .53.(2022·湖南娄底·模拟预测)下列实数中是无理数的是( ) A .1-B .12C D .04.(2022·湖南邵阳·统考一模)在实数13-,3,4中,为负整数的是( )A .13- B .C .-3 D .45.(2022·湖南永州·统考中考真题)如图,数轴上点E 对应的实数是( )A .2-B .1-C .1D .26.(2022·湖南邵阳·1在数轴上的对应点可能是( )A .A 点B .B 点C .C 点D .D 点7.(2022·湖南株洲·统考中考真题)在0、13、-1 )A .0B .13C .-1 D8.(2022·湖南益阳·1,2,13中,比0小的数是( )A B .1 C .2D .139.(2022·湖南郴州·统考一模)实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是( )A .aB .bC .cD .d10.(2022·湖南湘西·统考中考真题)在实数﹣5,0,3,13中,最大的实数是( )A .3B .0C .﹣5D .1311.(2022·湖南株洲·统考一模)在实数-30,-1中,最小的数是( ) A .-3B .0C .-1D12.(2022·湖南株洲·+1的值在( ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间13.(2022·湖南邵阳·统考一模)实数a ,b 在数轴上的对应点的位置如图所示,则下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab <14.(2022·湖南永州·统考二模)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N .已知集合{}2,0,A x =,集合1,,y B x xx ⎧⎫=⎨⎬⎩⎭,若A B =,则x y -的值是( )A .2B .12C .2-D .1-二、填空题15.(2022·湖南长沙·统考一模)面积为2的正方形的边长是__________.16.(2022·湖南株洲·_______. 17.(2022·湖南邵阳·统考模拟预测)64的立方根是_______. 18.(2022·湖南湘潭·统考中考真题)四个数-1,0,12_________.19.(2022·湖南永州·统考一模)在2-,45,0.2020020002……,2π中无理数的个数是_______个.20.(2022·湖南永州·统考模拟预测)在﹣2227π中,无理数有 _____个.21.(2022·湖南永州·10小的无理数:______.22.(2022·湖南常德·统考一模)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.23.(2022·湖南怀化·统考一模)观察下列各式:11111122=+-=;11111236=+-=;11111.3412+-=______.24.(2022·湖南永州·统考一模)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; …根据以上规律,计算123420222022x x x x x +++++-=_______.三、解答题25.计算:020211)|3|(1)+--.26.已知10x -. (1)求x 与y 的值; (2)求x +y 的算术平方根.27.已知21a +的平方根是3±,522a b +-的算术平方根是4,求34a b -的平方根.28.计算:(()120211313π-⎛⎫--+-+ ⎪⎝⎭29.计算:()12021113.145π-⎛⎫---- ⎪⎝⎭.30.已知5a ﹣1的算术平方根是3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根.参考答案:1.D【分析】根据平方根的定义即可判断. 【详解】A. 1的平方根是1±,正确; B. -1是1的平方根,正确; C. 1是1的平方根,正确; D. -1没有平方根,故错误; 选D.【点睛】此题主要考查平方根的定义,解题的关键是熟知非负数才有平方根. 2.A【分析】根据无理数的概念,无限不循环小数是无理数即可判断.【详解】解:在3317π,2022π,共2个. 故选:A .【点睛】本题主要考查无理数的概念,掌握无理数的概念是解题的关键. 3.C【分析】根据无理数的定义解答即可.【详解】A .-1是整数,属于有理数,故本选项不合题意; B .12是分数,属于有理数,故本选项不合题意;CD .0是整数,属于有理数,故本选项不符合题意. 故选:C .【点睛】本题考查了无理数的定义,掌握无理数的定义是解题的关键. 4.C【分析】根据负整数定义解答.【详解】解:在实数13-,3,4中,为负整数的是-3,故选:C .【点睛】此题考查了有理数的分类,正确掌握有理数的各种形式及负整数的定义是解题的关键. 5.A【分析】根据数轴上点E 所在位置,判断出点E 所对应的值即可;【详解】解:根据数轴上点E 所在位置可知,点E 在-1到-3之间,符合题意的只有-2;故选:A .【点睛】本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键. 6.B【分析】根据22212<<得011<,即可得.【详解】解:①22212<<, ①12< ①011<<, 故选:B .【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的大小比较. 7.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.1013>>>-, ①在0、13、-1这四个数中,最小的数是-1.故选C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 8.A【分析】利用零大于一切负数来比较即可.0,故A 正确. 故选:A .【点睛】本题考查了实数的大小比较,解答此题关键要明确:正实数>零>负实数,两个负实数绝对值大的反而小. 9.C【分析】根据数轴上某个数与原点的距离的大小确定结论. 【详解】解:由图可知:c 到原点O 的距离最短, 所以在这四个数中,绝对值最小的数是c ; 故选:C .【点睛】本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的10.A【分析】利用实数大小比较的法则将各数按从小到大排列后即可得出结论.【详解】解:将各数按从小到大排列为:﹣5,0,13,3,①最大的实数是3,故选:A.【点睛】本题主要考查了实数大小的比较,利用实数大小比较的法则将各数按从小到大排列是解题的关键.11.A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:①-3<-1<0①在实数3-0,1-中,最小的数是3-.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.C的范围.【详解】解:①479<<①23<<①314<<故选C.的范围.13.D【分析】由数轴知a<-1<0<b<1,即可判断各式的符号.【详解】解:由数轴知a<-1<0<b<1,①a<b,a b>,a+b<0,ab<0,故选:D.【点睛】此题考查了利用数轴上点的位置判断式子的正负,正确掌握数轴性质及有理数加法法则、乘法法则、绝对值的性质是解题的关键.【分析】根据集合的定义和集合相等的条件即可判断.【详解】解:①A=B,x≠0,1x≠0,①yx=0,1x=2,|x|=x或yx=0,1x=x,|x|=2(无解),①y=0,x=12,①x−y=12−0=12,故选:B.【点睛】本题以集合为背景考查了代数式求值,关键是根据集合的定义和性质求出x,y的值.15【分析】设正方形的边长为x,根据题意得22x=,求解即可.【详解】解:设正方形的边长为x,由题意得22x=,,【点睛】此题考查平方根的实际应用,正确求一个数的平方根是解题的关键.16.4【分析】根据算术平方根的定义解答即可..故答案为4【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根;正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.17.4【分析】根据立方根的定义即可求解.【详解】解:①43=64,①64的立方根是4,故答案为:4.【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.18【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数. 【详解】解:-1,0,12是有理数;【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;①①虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等. 19.3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环/数是有理数,而无限不循环小数是无理数,由此即可判定.0.2020020002……,2三个, 故答案为:3【点睛】此题主要考查了无理数的定义,其中初中阶段学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的无限不循环小数. 20.3【分析】根据无理数的定义解答即可.【详解】解:-2是整数,不是无理数,是无理数;227是无理数,π是无理数;则无理数数有3个. 故答案为3.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π、2π等;开方开不尽的数;以及像0.1010010001..等有这样规律的数都属于无理数.21【分析】根据实数的大小比较即可求出答案. 【详解】解:①5<7<100,①10.【点睛】本题考查实数比较大小,解题的关键是熟练运用实数比较大小的法则,本题属于基础题型.22.2m m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】由题意规律可得:2399100222222++++=-.①1002=m ①23991000222222=2m m +++++==, ①22991001012222222+++++=-,①10123991002222222=++++++12=2m m m m =+=. 102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.……①1999922m =. 故10010110110199992222222m m m ++++=+++.令012992222S ++++=① 12310022222S ++++=②①-①,得10021S -= ①10010110110199992222222m m m ++++=+++=()100221m m m -=-故答案为:2m m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键. 23.1156【分析】1111n n +-+ , 符合规律,根据规律可得结果,然后进行加减运算即可. 【详解】解:根据题意,第n 个等式为1111n n +-+11178+-=57115656= 故答案为: 1156.【点睛】本题考查了与实数加减相关的规律探究问题,找到规律是解题的关键.24.20222023【分析】根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案.【详解】解:①1311212x ==+⨯2711623x ==+⨯313111234x ===+⨯ ①①12320222022x x x x +++⋯+-11111111202212233420222023=++++++⋯++-⨯⨯⨯⨯ 11111112022120222233420222023=+-+-+-+⋯+--11202320222023. 故答案为:20222023. 【点睛】本题考查了数字的规律,解此题的关键是能根据已知条件得出规律. 25.0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1) =0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键. 26.(1)1x =,3y =;(2)2【分析】(1)根据绝对值和平方根的非负性求出x 与y 的值; (2)先计算x y +的值,即可得出x y +的算术平方根.【详解】(1)由题可得:10250x x y -=⎧⎨-+=⎩,解得:13x y =⎧⎨=⎩, ①1x =,3y =;(2)134x y +=+=,①4的算术平方根为2,①x y +的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键. 27.4±【分析】根据平方根和算术平方根的定义即可求出21a +和522a b +-的值,进而求出a 和b 的值,将a 和b 的值代入34a b -即可求解.【详解】解:①21a +的平方根是3±,522a b +-的算术平方根是4,①21a +=9,522a b +-=16,①a =4,b =-1把a =4,b =-1代入34a b -得:3×4-4×(-1)=16,①34a b -的平方根为:4=±.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.28.0【分析】先化简零指数幂,绝对值,有理数的乘方,负整数指数幂,然后再计算即可得.【详解】解:(()1020211313π-⎛⎫--+-+ ⎪⎝⎭, 1313=--+,0=.【点睛】本题考查实数的混合运算,负整数指数幂,零指数幂,化简绝对值,掌握各运算的运算顺序和计算法则是解题关键.29.3.【分析】直接利用乘方,零指数幂的性质,负整数指数幂的性质二和次根式的性质分别化简得出答案.【详解】解:()10202111 3.145π-⎛⎫---- ⎪⎝⎭ ()1215=--+--=3【点睛】本题主要考查了实数运算,熟悉相关性质,能正确化简各数是解题关键.30.(1)a=2,b=3(2)±4【分析】(1)根据算术平方根与立方根定义得出5a﹣1=32,3a+b﹣1=23,解之求得a、b的值;(2)由a、b的值求得2a+4b的值,继而可得其平方根.【详解】(1)由题意,得5a﹣1=32,3a+b﹣1=23,解得a=2,b=3.(2)①2a+4b=2×2+4×3=16,①2a+4b的平方根.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.。
2018中考数学第一轮总复习课时1.实数的有关概念【课前热身】1. 2的平方根是( )A .4B .2C .2-D .2±2.下列运算正确的是( ).A . 0(3)1-=-B . 236-=-C .9)3(2-=-D . 932-=- 3.2的相反数是 . 4.3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7³10-6B. 0.7³10-6C. 7³10-7D. 70³10-8 【考点链接】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a<10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14³105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x;而22=-,但少部分同学写成 22±=-.(3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个例2 ⑴2--的倒数是( )A .2 B.12 C.12- D.-2⑵若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4⑶如图,数轴上点P 表示的数可能是( )A.7B. 7-C. 3.2-D. 10-例3 下列说法正确的是( )A .近似数3.9³103精确到十分位B .按科学计数法表示的数8.04³105其原数是80400C .把数50430保留2个有效数字得5.0³104.D .用四舍五入得到的近似数8.1780精确到0.001例4、下列各组数中,互为相反数的是( )3- 2- 1- O 1 2 3PA .2和21B .-2和-21 C . -2和|-2| D .2和21【中考演练】1.-3的相反数是____,-12的绝对值是___,2-1=______,2008(1)-= .2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,14,0,32,364,0.31,227,2π,2.161 161 161…,(-2 005)是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.51-的倒数是 ( ) A .51- B .51 C .5- D .58.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.下列计算错误的是( )A .-(-2)=2B .822=C .22x +32x =52x D .235()aa =10.计算1123-的结果是( )(A)733- (B)3323-(C)3 (D)533-11.16的算术平方根是( )A.4B.-4C.±4D.16 12.实数a 、b 在数轴上的位置如图所示,则a 与b的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或214. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数15、实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A - C 表示观测点A 相对观测点C 的高度):A - C C - D E - D F - E G - FB - G 90米80米-60米50米-70米40米根据这次测量的数据,可得观测点A 相对观测点B 的高度是( ) 米.A .210B .130C .390D .-210 16、下列计算中,正确的是( )A . 22-=-B . 523-=C . 325a a a ⋅=D . 22x x x -=17、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .obaABO-3第一排 第二排 第三排 第四排6 ┅┅ 1098 73 21 54 图5输入x 输出y平方乘以2 减去4若结果大于0否则总复习课时2.实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .2.计算:=--2)32(_______.3.比较大小:3- 31-.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.65.下列各式正确的是( )A .33--=B .326-=- C .(3)3--= D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2³1=2,3!=3³2³1=6,4!=4³3³2³1,…,则100!98!的值为( )A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na,其中a 叫做 ,n 叫做 . 2. =0a(其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.如5÷51³5. 【典例精析】例1 计算:⑴20080+|-1|-3cos30°+ (21)3; ⑵232(2)2sin 60---+ .(3)化简:0293618(32)(12)23+--+-+-例2 计算:1301()20.1252009|1|2--⨯++-.﹡例 3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--.3.计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 124. 下列各式运算正确的是( ) A .2-1=-21B .23=6C .22²23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( )A. 10 B .20 C .-30 D .186. 计算:⑴4245tan 21)1(10+-︒+--;⑵201()(32)2sin 3032---+︒+-;⑶ 01)2008(260cos π-++- .7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,…(1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)³4=24.(注意上述运算与4 ³(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________,(3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24. 9、(2009,佛山)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .22-C .23+D .32E .0 问题的答案是(只需填字母): ;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).10、(2009,邵阳)阅读下列材料,然后回答问题。
2020中考数学一轮复习基础达标训练题1:实数(附答案)1.下面计算正确的是( )A 4=±B .–3÷3×3=–3C .–3–3=0D .1331-÷=2.若定义运算a ⊗b =|2a –b |,则2⊗[(–5)⊗(–7)]的值是( )A .1B .7C .13D .253.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为=10;③(-6)2的算术平方根是6;④a 2的算术平方根是a.正确的有( )A .1个B .2个C .3个D .4个4.在3,0,﹣2 )A .3B .0C .﹣2 D5.25的平方根是( )A .5B .-5C .±5D .6.无理数﹣3在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.在实数3,14159 2.010010001(1与1之间依次多一个0),π,227中,无理数有( )A .1个B .2个C .3个D .4个8.化简A .5-B .1C .D .19.春节晚会上,电工师傅在礼堂四周挂了一圈只有绿、黄、蓝、红四种颜色的小彩灯,其排列规律为:绿黄黄红蓝红红绿黄黄红蓝红红绿黄黄红蓝红红……,那么,第2010个小彩灯的颜色是( )A .绿色B .黄色C .红色D .蓝色10.若实数m 、n 满足 20m -=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8D .611.32-的绝对值是______, ______的倒数是13 ______.12.若2a -(c +4)2=0,则a +b +c 的平方根是________.13 3.843,===_______14.若实数a 、b 满足20a +=,则a b=_____. 15.如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行程序框图,如果输入a ,b 的值分别为3,9,那么输出a 的值为________.16.已知一个正数x 的两个平方根是1a +和3a -,则a =_______,x =______.17.若a ﹣3有平方根,则实数a 的取值范围是_____.18.若的平方根为,则=_______.19.36的平方根是______,81的算术平方根是______.20____.21.化简:(15- ; (2--22.求下列各式的值:(1;(2);(3)(4);(5(6233-,00.3,227, 1.732-,π2-,3+,0.1010010001整数{ };分数{ };正数{ };负数{ };有理数{ };无理数{ }24.()1计算:021(2018)9()3-⨯-.()2化简:()()22a a a +-- ()1a +.25.计算:(﹣2)2﹣(2)0+2•tan45°26.已知,我们把任意形如:t abcba =的五位自然数(其中c a b =+,19a ≤≤,08b ≤≤)称之为喜马拉雅数,例如:在自然数32523中,325+=,所以32523就是一个喜马拉雅数.并规定:能被自然数n 整除的最大的喜马拉雅数记为()F n ,能被自然数n 整除的最小的喜马拉雅数记为()I n .(1)求证:任意一个喜马拉雅数都能被3整除;(2)求()3+(8)F I 的值.27.已知a 的整数部分,b 是它的小数部分,求(﹣a )3+(b+2)2的值.参考答案1.B【解析】试题解析:4,=故错误.B.133333 3.3-÷⨯=-⨯⨯=-正确.C.336,--=-故错误.D.111133.339﹣÷=⨯=故错误.故选B.2.A【解析】【分析】根据题目中的运算规则a⊗b=|2a–b|依次计算即可.【详解】根据题中的新定义得:原式=2⊗3=1,故选A.【点睛】本题是一道新定义问题的计算题,考查了对新知识的理解应用能力,比较简单.3.A【解析】试题分析:①0的算术平方根是0,故此项错误;②100的算术平方根是10=10,故此项错误;③(-6)2=36,36的算术平方根是6,即(-6)2的算术平方根是6,故此项正确;④当a<0时,a2的算术平方根是-a,故错误.所以正确的只有1个.故选A.4.C【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数直接解答即可.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以203-<<<,-,故选C.所以最小的数是2【点睛】此题主要考查了实数的大小比较的基本方法:正数都大于0,负数都小于0,正数大于一切负数.5.C【解析】分析:根据平方根的定义即可解答.=±.详解:25的平方根为:5故选:C.点睛:本题考查了平方根的定义.注意和算术平方根区分开.6.B【解析】【分析】首先得出【详解】∵∴6<7,∴无理数在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7.A【解析】=4,无理数有:π,共1个.故选A.点睛:本题考查了无理数的知识,解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8.C【解析】===3,==故选C.9.A【解析】【分析】观察发现,每七个为一个循环,而2010=7×287+1,而第一个是绿色.【详解】∵2010=7×287+1,∴第2010个彩灯的颜色是绿色.故选A.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此类题主要是发现几个一循环的规律,然后根据规律进行分析.10.B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.11.32, 3, 2 【解析】【分析】根据绝对值的性质、倒数的定义及算术平方根的定义即可得出结论.【详解】解:(1)3322-=;(2)13的倒数是3;4=,4的算术平方根是2; 故答案为:(1).32;(2)3;(3)2. 【点睛】 本题考查了绝对值的性质、倒数的定义及算术平方根的定义.易错点:对于带根号实数求平方根(算术平方根)要注意,先化简根号,再求平方根(算术平方根).12.±1【解析】【分析】根据非负数的性质列式求出a 、b 、c 的值,然后代入进行计算求出a+b+c 的值,再根据平方根的定义求解即可.【详解】∵│a -()4c +2=0∴a-2=0,b-3=0,c+4=0∴a=2,b=3,c=-4∴a+b+c=1∴a+b+c 的平方根=±1.故答案为±1. 【点睛】本题考查了算术平方根与非负数,解题的关键是能熟练的掌握非负数的性质与平方根的定义.13.0.1215【解析】【分析】根据被开方数小数点向左平移两位,算术平方根的小数点向左平移一位可得答案.【详解】1.215,,故答案为:0.1215.【点睛】此题主要考查了算术平方根,掌握小数点的平移规律是解题关键.14.﹣1 2【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.15.3【解析】【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【详解】由a=3,b=9,不满足a>b,则b变为9−3=6,不满足a>b,则b变为6−3=3,由a=b=3,则输出的a=3.故答案为3.【点睛】本题考查了程序框图,解题的关键是根据程序框图进行运算.16.1 4【解析】解:根据题意,得:a+1+(a﹣3)=0,解得:a=1.则x=(1+1)2=4.故答案为:1,4.点睛:本题考查了平方根的性质:正数有两个平方根,且它们互为相反数;负数没有平方根;0的平方根是0.17.a≥3.【解析】【分析】根据平方根的定义列出不等式计算即可.【详解】a-≥根据题意,得30.a≥解得: 3.a≥故答案为 3.【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.18.2【解析】【分析】根据平方根的定义列方程求解即可.【详解】由题意得,2a-1=3,解得a=2.故答案为:2.【点睛】本题考查了平方根,熟记概念是解题的关键.19.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.20.9.【解析】,∵(±9)2=81,∴81的算术平方根是9.故答案为:9.21.(1)1(2)【解析】试题分析:(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可.试题解析:(1)原式5=6−5=1;(2)原式−=−22.(1)15;(2)-0.02;(3)72±;(4)-0.1;(5)0.7;(6)9. 【解析】试题分析:根据算术平方根的定义可知,因为15的平方等于225,所以225的算术平方根等于15;把1124化成假分数为494,因为72的平方等于494,所以1124的平方根等于±72;因为0.02的平方等于0.0004,所以0.0004的负的平方根为-0.02;根据二次根式的性质可得0.10.1=-=-0.9=9==. 请在此填写本题解析!解:(1 =15;(2) =-0.02;(3) 72==±;(4) =-|0.1|=-0.1;(5) =0.9-0.2=0.7;(6)9==.点睛:本题考查了平方根和算术平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根. 23.见解析.【解析】【分析】根据实数的分类进行解答:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正有理数有理数负无理数正无理数无理数负无理数,或实数0⎧⎪⎨⎪⎩正实数.负实数 【详解】解:整数集合{-3,0,,…}; 分数集合220.3,, 1.732,7⎧⎫-⎨⎬⎩⎭; 正数集合227,30.101 001 000 1…(每两个1之间依次增加一个0),…};负数集合π3,,2⎧⎫---⎨⎬⎩⎭;有理数集合223,0,0.3,,7⎧⎫--⎨⎬⎩⎭;无理数集合()π,3102⎫-+⎬⎭每两个之间依次增加一个,【点睛】本题考查的是实数的分类,解题关键是熟记定义.24.(1)(2)4a --【解析】【分析】 ()1根据零指数幂、二次根式的化简等计算法则求解;()2利用多项式乘多项式以及单项式乘多项式的计算法则求解.【详解】()1解:原式1199=+⨯= ()2解:原式224a a a =--- 4a =--.【点睛】本题考查了平方差公式,实数的运算,零指数幂等知识点,解题的关键是熟练掌握运算法则即可.25.5.【解析】【分析】按顺序分别进行平方运算、0指数幂运算、代入特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】(﹣2)2﹣(20+2•tan45°=4﹣1+2×1=3+2=5.【点睛】本题考查了实数的运算,涉及了0指数幂、特殊角的三角函数值等,熟练掌握相关的运算法则是解题的关键.26.(1)答案见解析;(2)112221.【解析】分析:(1)根据喜马拉雅数的定义求出各个数位上的数字之和;(2)根据能被自然数8整除的最小的喜马拉雅数记为()8I 的整除的特征,与各数位上的数字的特点求得I (8).详解:(1)各数位数字之和为:a +b +c +b +a =2a +2b +c =2a +2b +(a +b )=3(a +b ).∵a ,b 是整数,∴a +b 是整数.∴任意一个喜马拉雅数都能被3整除(2)根据题意得:F (3)=90909.I (8)=()10101111088ab a b aba b ++==1263a +139b -328a b +, ∵喜马拉雅数能被8整除,∴3a +2b 能被8整除.∵19a ≤≤,08b ≤≤,19a b ≤≤+,∴33227a b ≤≤+.∴3a +2b =8或16或24.则I (8)=21312.∴F (3)+I (8)=90909+21312=112221.点睛:新定义题是历年的热点题,它的实质是一种规定,规定某种运算方式,规定某个概念的特征性质,然后要求按照规定去计算.求值,解决此类问题,关键是要正确理解新定义的运算的意义,本题的头关键是抓住喜马拉雅数的特征. 27.-1.【解析】【分析】的范围,确定a ,b 的值,再代入代数式即可解答.【详解】解:∵23,∴a=2,﹣2,∴(﹣a )3+(b+2)2=(﹣2)3+﹣2+2)2=﹣8+7=﹣1.【点睛】的范围.。
2021中考数学一轮专题训练:实数及其运算一、选择题(本大题共10道小题)1. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元2. 下列实数中,有理数是()A. 8B. 34 C.π2 D. 0.10100100013. 若x2+4x-4=0,则3(x-2)2-6(x-1)(x+1)的值为()A.-6B.6C.18D.304. 计算|-8|--0的值是 ()A.-7B.7C.7D.95. 能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是()A. a=-2B. a=13C. a=1 D. a= 26. 下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A. 495B. 497C. 501D. 5037. 计算(-3)0+---1的结果是()A.1+B.1+2C.D.1+48. 已知|a|=1,b是2的相反数,则a+b的值为()A.-3B.-1C.-1或-3D.1或-39. 下列运算正确的是( )A .-2(3x -1)=-6x -1B .-2(3x -1)=-6x +1C .-2(3x -1)=-6x -2D .-2(3x -1)=-6x +210. 观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+…+72019的结果的个位数字是 ( ) A .0B .1C .7D .8二、填空题(本大题共10道小题)11. 计算:7x -4x =________.12. 将下列各式写成乘方的形式:(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)×(-2.3)=________; (2)⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14=________.13. 化简-3(a -2b +1)的结果为________.14. 计算:-÷= .15. 甲地的海拔为-300米,乙地比甲地高320米,那么乙地的海拔为________.16. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.17. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米.18. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .19. 我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.20. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题(本大题共6道小题)21. 已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.22. 计算:2cos60°+(-1)2017+|-3|-(2-1)0.23. 列式并计算:(1)-2减去-13与12的和是多少?(2)正213、正635、负313的和与525的差是多少?24. 一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?25. 阅读理解阅读材料:因为|x|=|x-0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1-x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x-2|=3的几何意义是什么?这里x的值是多少?(2)等式|x-4|=|x-5|的几何意义是什么?这里x的值是多少?(3)式子|x-1|+|x-3|的几何意义是什么?这个式子的最小值是多少?26. 有四个数,第一个数是m+n2,第二个数比第一个数的2倍少1,第三个数是第二个数减去第一个数的差,第四个数是第一个数与m的和.(1)求这四个数的和;(2)当m=1,n=-1时,这四个数的和是多少?2021中考数学一轮专题训练:实数及其运算-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】D【解析】A,B,C都是无理数,所以都是错误的.3. 【答案】B[解析]∵x2+4x-4=0,即x2+4x=4,∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6=-3x2-12x+18=-3(x2+4x)+18=-12+18=6.故选B.4. 【答案】B5. 【答案】A【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a=13,1,2时,|a|>-a总是成立,当a=-2时,|-2|=2=-(-2),此时|a|=-a,故本题选A.6. 【答案】A【解析】当把3按此规律操作时,不难得出应该是362486248…,除首位的3外,四个一循环,因而(100-1)÷4=24…3,则这个多位数前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495.7. 【答案】D8. 【答案】C[解析]∵|a|=1,b是2的相反数,∴a=1或a=-1,b=-2.当a=1时,a+b=1-2=-1;当a=-1时,a+b=-1-2=-3.综上,a+b的值为-1或-3,故选C.9. 【答案】D10. 【答案】A[解析]根据70=1,71=7,72=49,73=343,74=2401,75=16807,可知个位数字的变化周期为4,相邻的四个数和的个位数字为0.∵2020÷4=505,故70+71+…+72019的结果的个位数字是0,故选项A正确.二、填空题(本大题共10道小题)11. 【答案】3x12. 【答案】(1)(-2.3)5(2)(-1 4)413. 【答案】-3a+6b-314. 【答案】-15. 【答案】20米[解析] (-300)+320=20(米).16. 【答案】-3[解析] 由图可知a=-4,b=-1,所以a-b=-4-(-1)=-4+1=-3.17. 【答案】418. 【答案】1.1[解析]根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=1.1,故答案为:1.1.19. 【答案】4[解析]根据每行、每列、两条对角线上的三个数之和相等,可知三行、三列、两对角线上的三个数之和都等于15, ∴第一列第三行数为:15-2-5=8,∴m=15-8-3=4.20. 【答案】4a +8[解析] 由图可知,右上角的数为a ,则左上角的数为a -1,右下角的数为a +5,左下角的数为a +4,所以这4个数的和为a +(a -1)+(a +4)+(a +5)=4a +8.三、解答题(本大题共6道小题)21. 【答案】解:(x -2y )2-(x -y )(x +y )-2y 2 =x 2-4xy +4y 2-(x 2-y 2)-2y 2 =-4xy +3y 2 =-y (4x -3y ). ∵4x=3y , ∴原式=0.22. 【答案】解:原式=2×12-1+3-1=2.(6分)23. 【答案】解:(1)-2-(-13+12)=-2--2+36=-2-16=-136. (2)213+635-313-525=(213-313)+(635-525)=-1+115=15.24. 【答案】解:(1)5-3+10-8-6+12-10=0, 故守门员回到了原来的位置.(2)守门员离开球门的位置最远是12米.(3)守门员一共走了|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).25. 【答案】解:(1)等式|x -2|=3的几何意义是数轴上表示数x 的点与表示数2的点之间的距离等于3.这里x 的值是-1或5.(2)设数轴上表示数x ,4,5的点分别为P ,A ,B ,则等式|x -4|=|x -5|的几何意义是点P 到点A 的距离等于点P 到点B 的距离.这里x 的值是412.(3)设数轴上表示数x ,1,3的点分别为P ,M ,N ,则式子|x -1|+|x -3|的几何意义是点P 到点M 的距离与点P 到点N 的距离的和.结合数轴可知,当1≤x≤3时,式子|x -1|+|x -3|的值最小,最小值是2.26. 【答案】[解析] 先分别表示出第二、三、四个数,再求和.解:(1)第二个数是2(m +n 2)-1=2m +2n 2-1,第三个数是(2m +2n 2-1)-(m +n 2)=2m +2n 2-1-m -n 2=m +n 2-1,第四个数是m +n 2+m =n 2+2m.所以这四个数的和为m +n 2+(2m +2n 2-1)+(m +n 2-1)+(n 2+2m)=m +n 2+2m +2n 2-1+m +n 2-1+n 2+2m =5n 2+6m -2. (2)当m =1,n =-1时,5n 2+6m -2=5×(-1)2+6×1-2=5+6-2=9.。
第一讲实数(含二次根式)【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.25.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.68.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6 14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d| 15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106 17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m 18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.24.(2021•济南)9的算术平方根是()25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2 26.(2022•常州)化简:=.27.(2021•南充)如果x2=4,则x=.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2 30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1 31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2 35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.536.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3 37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a 39.(2022•衢州)计算()2=.40.(2022•山西)计算:×的结果为.41.(2022•南充)若为整数,x为正整数,则x的值是.42.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.43.(2022•天津)计算(+1)(﹣1)的结果等于.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.答案与解析【命题1 实数的分类级正负数意义】1.(2022•巴中)下列各数是负数的是()A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.【答案】D【解答】解:(﹣1)2=1,是正数,故A选项不符合题意;|﹣3|=3,是正数,故B选项不符合题意;﹣(﹣5)=5,是正数,故C选项不符合题意;,是负数,故D选项符合题意.故选:D.2.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.3.(2022•日照)在实数,x0(x≠0),cos30°,中,有理数的个数是()A.1个B.2个C.3个D.4个【答案】B【解答】解:在实数,x0(x≠0)=1,cos30°=,=2中,有理数是,x0(x≠0),所以,有理数的个数是2,故选:B.4.(2022•金华)在﹣2,,,2中,是无理数的是()A.﹣2B.C.D.2【答案】C【解答】解:﹣2,,2是有理数,是无理数,故选:C.5.(2022•益阳)四个实数﹣,1,2,中,比0小的数是()A.﹣B.1C.2D.【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.【命题点2 相反数、倒数、绝对值】6.(2022•黔西南州)﹣3的绝对值是()A.±3B.3C.﹣3D.【答案】B【解答】解:﹣3的绝对值:|﹣3|=3,故选:B.7.(2022•盘锦)﹣6的倒数是()A.B.﹣0.6C.D.6【答案】A【解答】解:﹣6的倒数是1÷(﹣6)=.故选:A.8.(2022•聊城)实数a的绝对值是,a的值是()A.B.﹣C.±D.±【答案】D【解答】解:∵|a|=,∴a=±.故选:D.9.(2022•福建)﹣11的相反数是()A.﹣11B.C.D.11【答案】D【解答】解:﹣(﹣11)=11.故选:D【命题点3 数轴】10.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【答案】D【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.11.(2021•怀化)数轴上表示数5的点和原点的距离是()A.B.5C.﹣5D.﹣【答案】B【解答】解:数轴上表示数5的点和原点的距离是5;故选:B.12.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.13.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【答案】A【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A14.(2022•台湾)如图数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|【答案】A【解答】解:∵a表示的点A到原点的距离最近,∴|a|最小,故选:A.15.(2021•安顺)如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|﹣|a|正确的是()A.b﹣a B.a﹣b C.a+b D.﹣a﹣b【答案】C【解答】解:由图可知,a<0,b>0,∴|a|=﹣a,|b|=b,∴|b|﹣|a|=b+a,故选:C.【命题点4 科学计数法】16.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A.0.11×108B.1.1×107C.11×106D.1.1×106【答案】B【解答】解:11000000=1.1×107.故选:B.17.(2022•贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m【答案】C【解答】解:因为1nm=10﹣9m,所以28nm=28×10﹣9m=2.8×10﹣8m.故选:C.18.(2021•荆门)“绿水青山就是金山银山”某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.012×108元资金.数据1.012×108可表示为()A.10.12亿B.1.012亿C.101.2亿D.1012亿【答案】B【解答】解:数据1.012×108可表示为:1.012×108=101200000=1.012亿,故选:B.19.(2021•潍坊)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)表示为()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【答案】C【解答】解:101 527 000=1.01527×108≈1.015×108.故选:C.【命题点5 实数的大小比较】20.(2022•营口)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.【答案】C【解答】解:∵﹣1<0<<2,∴最大的数是2;故选:C.21.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()A.a>b B.a<b C.a=b D.无法确定【答案】B【解答】解:∵b>0,a<0,∴a<b,故选:B.22.(2022•临沂)比较大小:(填“>”,“<”或“=”).【答案】<【解答】解:∵()2=,()2=,<,∴<,故答案为:<.【命题点6 平方根、算术平方根、立方根】23.(2022•攀枝花)2的平方根是()A.2B.±2C.D.【答案】D【解答】解:因为(±)2=2,所以2的平方根是,故选:D.24.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【答案】A【解答】解:∵32=9,∴9的算术平方根是3.故选:A.25.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【答案】C【解答】解:=4,±=±2,故选:C.26.(2022•常州)化简:=.【答案】2【解答】解:∵23=8∴=2.故填2.27.(2021•南充)如果x2=4,则x=.【答案】±2【解答】解:x2=4,开平方得x=±2;故答案为:±2.28.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【答案】2【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2【命题点7 二次根式及其运算】【类型一二次根式的有关概念及性质】29.(2022•湘西州)要使二次根式有意义,则x的取值范围是()A.x>2B.x<2C.x≤2D.x≥2【答案】D【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.30.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【答案】B【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.31.(2022•雅安)使有意义的x的取值范围在数轴上表示为()A.B.C.D.【答案】B【解答】解:∵有意义,∴x﹣2≥0,∴x≥2,故选:B.32.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【答案】D【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.33.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【答案】D【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.【类型二二次根式的运算】34.(2022•凉山州)化简:=()A.±2B.﹣2C.4D.2【答案】D【解答】解:==2,故选:D.35.(2022•南岸区自主招生)计算+结果正确的是()A.B.3C.3D.5【答案】C【解答】解:+=.故选:C.36.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3【答案】B【解答】解:(﹣)×=﹣=﹣=3﹣2=1,故选:B37.(2022•瓯海区校级自主招生)已知点P(x,y)在函数y=的图象上,那么点P应在平面直角坐标系中的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵,∴x<0;又∵x<0,∴,即y>0∴P应在平面直角坐标系中的第二象限.故选:B.38.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a【答案】B【解答】解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.39.(2022•衢州)计算()2=.【答案】2【解答】解:原式=2.故答案是2.40.(2022•山西)计算:×的结果为.【答案】3【解答】解:原式==3.故答案为:3.41.(2022•南充)若为整数,x为正整数,则x的值是.【解答】解:∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵为整数,∴=0或1或2,当=0时,x=8,当=1时,x=7,当=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【答案】4或7或842.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.【答案】2【解答】解:∵1<<2,∴1<3﹣<2,∵若3﹣的整数部分为a,小数部分为b,∴a=1,b=3﹣﹣1=2﹣,∴(2+a)•b=(2+)(2﹣)=2,故答案为:2.43.(2022•天津)计算(+1)(﹣1)的结果等于.【答案】18【解答】解:原式=()2﹣12=19﹣1=18,故答案为:18.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.【答案】2【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|﹣+=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.45.(2022•内蒙古)已知x,y是实数,且满足y=++,则的值是.【答案】【解答】解:∵y=++,∴x﹣2≥0,2﹣x≥0,∴x=2,y=,则原式=×==,故答案为:【类型三二次根式的估值】46.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】B【解答】解:∵4<6<9,∴2<<3.故选:B47.(2022•重庆)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.48.(2022•北碚区自主招生)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解答】解:×﹣1=﹣1,∵5<<6,∴4<﹣1<5,∴×﹣1的值应在4和5之间.故选:C.【命题点8 实数的运算】【类型一有理数的运算】49.(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.50.(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【解答】解:(1)(﹣6)×(﹣)﹣23=(﹣6)×﹣8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(﹣x)﹣23=6,解得:x=3,答:被污染的数字是3.【类型二实数的运算】51.(2022•甘肃)计算:×﹣.【解答】解:原式=﹣2=﹣.52.(2022•河池)计算:|﹣2|﹣3﹣1﹣×+(π﹣5)0.【解答】解:原式=2﹣﹣2+1=.53.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.【解答】解:∵a=2+,b=2﹣,∴a2b+ab2=ab(a+b)=(2+)(2﹣)(2++2﹣)=(4﹣5)×4=﹣1×4=﹣4.。
考点01实数实数这一考点在中考数学中属于较为简单的一类考点,数学中考中,有关实数的部分,通常以选择题、计算题题型考察,所考考点一般有:实数的相关概念,如相反数、绝对值、数轴、倒数、科学计算法等;实数的比较大小;实数的运算则多与二次根式、三角函数、负指数幂、绝对值等结合,以解答题形式考察;少数以填空题的形式出题。
对于实数的复习,需要学生熟练掌握实数相关概念及其性质的应用、实数运算法则和顺序等考点。
考向一、实数的相关概念;考向二、实数的分类;考向三、实数的比较大小;考向四、实数的运算;考向一:实数的相关概念注意事项与拓展1.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为()A .0.11×108B .1.1×107C .11×106D .1.1×1062.(2022•黄石)的绝对值是()A .1﹣B .﹣1C .1+D .±(﹣1)3.(2022•攀枝花)2的平方根是()A .2B .±2C .D .4.(2022•淄博)若实数a 的相反数是﹣1,则a +1等于()A .2B .﹣2C .0D .5.(2022•资阳)如图,M 、N 、P 、Q 是数轴上的点,那么在数轴上对应的点可能是()A .点MB .点NC .点PD .点Q考向二:实数的分类☆按定义分类:}}⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数正整数整数有理数实数0☆按正负分类:⎪⎩⎪⎨⎧负实数正实数实数0【易错警示】实数中的无理数常见的有4种形式:①含π的数,如-2π、4-π等;②开方开不尽的数的方根,如3-22、等;③某些三角函数,如sin45°、tan60°;④具有特定结构的数,如0.1010010001……(每两个1之间依次多加一个0);1.(2022•铜仁市)在实数,,,中,有理数是()A .B .C .D .2.(2022秋•漳州期中)下列实数是无理数的是()A .B .C .D .3.(2022•巴中)下列各数是负数的是()A .(﹣1)2B .|﹣3|C .﹣(﹣5)D .4.(2022•福建)如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是()A .B .C .D .π考向三:实数的大小比较注意事项与拓展1.(2022•安顺)下列实数中,比﹣5小的数是()A.﹣6B.﹣C.0D.2.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2B.b<1C.a>b D.﹣a>b3.(2022•泰州)下列判断正确的是()A.0<<1B.1<<2C.2<<3D.3<<44.(2022•台州)无理数的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5.(2022•绵阳)正整数a、b分别满足<a<、<b<,则b a=()A.4B.8C.9D.16考向四:实数的运算一、实数的运算种类:包括加、减、乘、除、乘方、开方,其中,减法转化为加法运算;除法、乘方都转化为乘法运算;二、零指数幂和负整数指数幂公式:)0(10≠=a a ;)0(1-≠=a a aPP;特别地:)0(11-≠=a aa ;三、实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,就先算括号内的;同级运算,按照从左到右的顺序进行,能用运算律的可用运算律简化计算。
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
中考第一轮复习与专题训练(一)数与式一、知识网络:实数的分类二、考点与针对训练1、相反数 如果两个数 不同,那么其中一个数就叫另一个数的相反数。
0的相反数是 。
互为相反的两个数,在数轴上位于原点的 ,并且与原点的距离 。
如果数a 和数b 互为相反数,则 ; 例 -3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 例 71-的相反数是 。
例 若)0,0(,≠≠b a b a 互为相反数,n 是自然数,则( ) A 、na2和nb2互为相反数 B 、12+n a和12+n b互为相反数C 、2a 和2b 互为相反数 D 、na 和nb 互为相反数例 若实数a 、b 互为相反数,则下列等式成立的是( ) A 、a -b B 、a+b=0 C 、ab=1 C 、ab= -12、绝对值:数轴上表示数a 的点与原点的 叫做数a 的绝对值。
记作|a|。
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是 ;0的绝对值是 ;一个负数的绝对值是 ,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的反而 。
概念剖析:错误!未找到引用源。
“一个数的绝对值就是数轴上表示该数的点与原点的距离”,而距离是非负,也就是说任何一个数的绝对值都是 数,即0≥a 。
错误!未找到引用源。
互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等。
例 如果两个数的绝对值相等,那么这两个数是( )A 、互为相反数B 、相等C 、积为0D 、互为相反数或相等 例 -2的绝对值是( ) A 、2 B 、-2 C 、21D 、4 例 |6|的绝对植是( ) A 、-6 B 、61-C 、61D 、6例 若│χ+3∣+∣y —2∣=0,则20014)y x +( = ;3、数轴:标有 、 和 的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
在数轴上所表示的数,右边的数总比左边的数 ,所以正数都大于0,负数都小于0,正数大于负数。
有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。
在数轴上求任意两点a 、b 的距离L,则有公式a b L b a L -=-=或。
例 在数轴上表示数3的点到表示数a 的点之间的距离是10,则数=a ; 若在数轴上表示数3的点到表示数a 的点之间的距离是b ,则数=a 。
例 a,b 两数在数轴上的位置如图,则下列正确的是( )A 、 a+b <0B 、 ab <0C 、ba<0 D 、0<-b a例 下列数轴画正确的是( )4、倒数:乘积是 的两个有理数互为倒数。
若实数a 、b 互为倒数则ab=1。
倒数也可以看成是把分子分母的位置颠倒过来。
例 -4的相反数的倒数是( )A 、-4B 、4C 、41-D 、41例 32-的例数是 。
2)21(--= 。
0)21(-= 。
例 倒数是其本身的数有_________;a 0bA 0 1- 1B 2-1- 0 1 2C0 1 1- 22- D5、科学记数法:把一个大于10的数记成n a 10⨯的形式,其中a (1≤a <10)是整数位只有一位的数,这种记数方法叫做科学记数法。
(1)与实际完全符合的数叫做准确数,与准确数接近的数叫做近似数。
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
(2)一个近数数,从左边第一个不是的 数字起,到精确到的数位止(最末尾一位)的所有的数字,叫做这个数的有效数字。
例 据中新社北京2010年12月8日电,2010年中国粮食产量达546 400 000吨,用科学计数法表示为( )A 、5.644×710吨 B 、5.644×810吨 C 、5.644×910吨 D 、5.644×1010吨 例 我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首,2010年中国小商品城成交额首次突破450亿关口。
请将数据450亿元用科学记数法表示为( ) A 、4.50×210元 B 、4.50×1010元 C 、0.45×310元 D 、0.45×1110元例 已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为保留三个有效数字( )A 、3.84×410千米 B 、3.84×510千米 C 、3.84×610千米 D 、38.4×410千米 6、无理数:无限不循环小数叫做无理数。
(1)开不尽方的数。
如33,7等。
(2)含有圆周率π的数。
(3)有特定结构的数。
如0。
1010010001……等。
(4)某些三角含数。
如sin450。
例 四个数 -5,-0.1,21,3中是无理数是( ) A 、-5 B 、-0.1 C 、21D 、3例 7,-1%,53,16,5,π,0.02,sin600这些数中无理数是 。
例 下列实数中是无理数的是( ) A 、2 B 、4 C 、31D 、3.14 7、二次根式。
(1)平方根:如果一个数的平方等于a (a ≥0),那么这个数叫做a 的平方根(或二次方根)。
记作“a ±”一个正数有 个平方根,它们互为 数。
0的平方根是 ; 数没有平方根; 例 3的平方根是( )A 、3B 、-3 D 、3± D 、3± 例 9的平方根是( )A 、3B 、3±C 、3D 、 3± 例 16的平方根是 。
(2)算术平方根:正数a 的正的平方根叫做a 的算术平方根。
记作“ a ” 。
0的算术平方根是 。
正数和0的算术平方根都只有一个。
a ≥0是一个非负数。
例 4的算术平方根是( )A 、2±B 、2C 、2D 、2± 例 (-2)2的算术平方根是( ) A 、2 B 、2± C 、-2 D 、4 例 化简12的结果是( ) A 、2±3 B 、23 C 、-23 D 、32(3)立方根:一个数产立方等于a ,这个数叫做a 的立方根。
记作“3a ”。
一个数的立方根只有一个。
例 -8的立方根是( )A 、2±B 、2C 、2D 、-2 例 327的立方根是 。
(4)二次根式:形如“a ”的式子叫做二次根式。
a 叫做被开方数,是非负数。
即a ≥0。
是二次根式有意义的条件。
例 若2-x 有意义,则x 满足条件( ) A .x >2. B .x ≥2 C .x <2 D .x ≤2. 例 等式1112-=-∙+x x x 成立的条件是 。
例 已知a 、b 、c 是△ABC 的三边长,且满足关系c 2-a 2-b 2+|a-b|=0,则△ABC 的形状为______。
例 在式子()()()230,2,12,20,3,1,2xx y y x x x x y+=--++ 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例 下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b二次根式的性质:(1)(a )2= (a ≥0); 2a = ;(2)b a ∙= (a ,b )(3)ba= ; (4)最简二次根式:(a ) 数中不含二次根式。
(b )被开方数中含能开得尽方的 ;(5)二次根式的加减:先将二次根式化成 ,再将 进行合并。
例 若3的整数部分为x ,小数部分为y ,则3x y -的值是( ) A. 333- B. 3 C. 1 D. 3例 计算: 2(6)-= ;例 化简:449= 。
例 计算:20102009)23()23(+∙-= 。
例 若23a ,则()()2223a a ---等于( )A. 52a -B. 12a -C. 25a -D. 21a - 例 以下运算错误的是( ) A .3535⨯=⨯ B .169169+=+C .2222⨯=D .2342a b ab b = 例 已知0xy ,化简二次根式2yxx -的正确结果为( ) A.y B. y - C. y - D. y --例 下列二次根式中,是最简二次根式的是( )A .8xB .x 2-3C .x -y xD .3a 2b例 在实数范围内分解因式:429__________,222__________x x x -=-+=。
例 下列各式不是最简二次根式的是( ) A. 21a + B. 21x + C.24bD. 0.1y 例 若22m n +-和3223m n -+都是最简二次根式,则_____,______m n ==。
例 对于二次根式29x +,以下说法中不正确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 例 下列根式中,与3是同类二次根式的是( )A. 24B. 12C. 32D. 18 例 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根B. 8与80是同类二次根式C. 2与150不是同类二次根式 D. 同类二次根式是根指数为2的根式 例 与3a b 不是同类二次根式的是( ) A.2ab B. b a C. 1abD. 3b a 例 下列根式中,是最简二次根式的是( )A. 0.2bB. 1212a b -C. 22x y - D 、2)(y x -例 计算82-的结果是( ) A .6 B .6C .2D .2例 23-和32-的大小关系是( )A. 2332--B. 2332--C. 2332-=-D. 不能确定 例 若()424A a =+,则A =( )A. 24a + B. 22a + C. ()222a + D. ()224a + 例 若1a ≤,则()31a -化简后为( )A. ()11a a --B. ()11a a --C. ()11a a --D. ()11a a --例 能使等式22xxx x =--成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 例 计算:()()222112a a -+-的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a -8、实数的运算:计算下列各式。
(1)+-0)12014(20245sin 18- (2)010)2013(260cos π-++-(3)(-3)2-|-21|+2-1-9 (4)(2-3)(2+3)+(-1)2014(π-2)0-1)21(-(5)2020142)31(45tan )1(2-+--+- (6)|-3|+030)2013(830tan 3π---(7)(1)8(425)23()23(-+∙-∙+(8)2010)2(1660tan 3)31()2014(-÷+-+--π9、实数规律探索:(1)如图①、②、③、④……,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是 。