中考数学实数复习练习题(最新整理)
- 格式:pdf
- 大小:141.35 KB
- 文档页数:4
中考数学总复习《实数-有理数》专项测试题(附答案)1.(2023枣庄)下列各数中比1大的数是( )A .0B .2C .﹣1D .﹣3 2.(2023福建)下列实数中,最大的数是( )A .1-B .0C .1D .23.(2023河南)下列各数中,最小的数是( )A. -lB. 0C. 1D. 34.(2023江西)下列各数中,正整数是( )A .3B .2.1C .0D .﹣2 5. (2023山西)计算()()13-⨯-的结果为( ).A. 3B. 13 C. 3- D. 4- 6.(2023天津)计算的结果等于( )A .B .﹣1C .D .1 7.(2023陕西)计算:3﹣5=( )A .2B .﹣2C .8D .﹣8 8.(2023嘉兴、舟山)8-的立方根是( )A .2-B .2C .2±D .不存在 9.(2023台州)下列各数中,最小的是( )A .2B .1C .﹣1D .﹣2 10.(2023绍兴)计算2﹣3的结果是( )A .﹣1B .﹣3C .1D .3 11. (2023宁波)在2,1,0,π--这四个数中,最小的数是() A. 2- B. 1- C. 0D. π 12. (2023株洲)计算:()342-⨯=( )A. 6-B. 6C. 8-D. 8 13. (2023常德)下面算法正确的是( )A. ()()5995-+=--B. ()710710--=-C. ()505-+=-D. ()()8484-+-=+14.(2023遂宁)已知算式5□(﹣5)的值为0,则“□”内应填入的运算符号为( )A .+B .﹣C .×D .÷15. (2023 广西)若零下2摄氏度记为2C -︒,则零上2摄氏度记为( )A. 2C -︒B. 0C ︒C. 2C +︒D. 4C +︒16. (2023广东)负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作5+元,那么支出5元记作( )A. 5-元B. 0元C. 5+元D. 10+元17. (2023深圳)如果10+°C 表示零上10度,则零下8度表示( )A. 8+℃B. 8-℃C. 10+℃D. 10-℃18.(2023泸州)下列各数中,最大的是( )A .﹣3B .0C .2D .|﹣1|19.(2023南充)如果向东走10m 记作+10m ,那么向西走8m 记作( )A .﹣10mB .+10mC .﹣8mD .+8m20.(2023凉山州)下列各数中,为有理数的是( )A .√83B .3.232232223…C .π3D .√2 21.(2023成都)在3,-7,0,19四个数中,最大的数是( ) A. 3 B. 7- C. 0 D. 1922.(2023衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A. 237+元B. 237-元C. 0元D. 474-元23.(2023凉山州)下列各数中,为有理数的是( )A .√83B .3.232232223…C .π3D .√2 24. (2023 云南)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作( )A. 80-米B. 0米C. 80米D. 140米25. (2023永州)我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”、如:粮库把运进30吨粮食记为“30+”,则“30-”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食26.(2023福建)某仓库记账员为方便记账,将进货10件记作10+,那么出货5件应记作_________.27.(2023随州)计算:(﹣2)2+(﹣2)×2=.28.(2023永州)-0.5,3,-2三个数中最小的数为______.29.(2023甘肃)近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“9050+米”,那么海平面以下10907米记作“_______米”.参考答案1.(2023枣庄)下列各数中比1大的数是(B)A.0B.2C.﹣1D.﹣32.(2023福建)下列实数中,最大的数是(D )A.1-B.0 C.1 D.23.(2023河南)下列各数中,最小的数是(A)A. -lB. 0C. 1D. 34.(2023江西)下列各数中,正整数是(A)A.3B.2.1C.0D.﹣25. (2023山西)计算()()13-⨯-的结果为( A ).A. 3B. 13C. 3-D. 4-6.(2023天津)计算的结果等于(D)A.B.﹣1C.D.17.(2023陕西)计算:3﹣5=(B)A.2B.﹣2C.8D.﹣8 8.(2023嘉兴、舟山)8-的立方根是(A)A .2-B .2C .2±D .不存在9.(2023台州)下列各数中,最小的是( D ) A .2 B .1 C .﹣1D .﹣2 10.(2023绍兴)计算2﹣3的结果是( A )A .﹣1B .﹣3C .1D .311. (2023宁波)在2,1,0,π--这四个数中,最小的数是( A )A. 2-B. 1-C. 0D. π12. (2023株洲)计算:()342-⨯=( A ) A. 6- B. 6 C. 8- D. 813. (2023常德)下面算法正确的是( C )A. ()()5995-+=--B. ()710710--=-C. ()505-+=-D. ()()8484-+-=+ 14.(2023遂宁)已知算式5□(﹣5)的值为0,则“□”内应填入的运算符号为( A )A .+B .﹣C .×D .÷15. (2023 广西)若零下2摄氏度记为2C -︒,则零上2摄氏度记为( C )A. 2C -︒B. 0C ︒C. 2C +︒D. 4C +︒16. (2023广东)负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作5+元,那么支出5元记作( A )A. 5-元B. 0元C. 5+元D. 10+元17. (2023深圳)如果10+°C 表示零上10度,则零下8度表示( B )A. 8+℃B. 8-℃C. 10+℃D. 10-℃18.(2023泸州)下列各数中,最大的是( C )A .﹣3B .0C .2D .|﹣1|19.(2023南充)如果向东走10m 记作+10m ,那么向西走8m 记作( C )A .﹣10mB .+10mC .﹣8mD .+8m20.(2023凉山州)下列各数中,为有理数的是( A )A .√83B .3.232232223…C .π3D .√221.(2023成都)在3,-7,0,19四个数中,最大的数是( A ) A. 3 B. 7- C. 0 D. 1922.(2023衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( B )A. 237+元B. 237-元C. 0元D. 474-元23.(2023凉山州)下列各数中,为有理数的是( A )A .√83B .3.232232223…C .π3D .√2 24. (2023 云南)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作( A )A. 80-米B. 0米C. 80米D. 140米25. (2023永州)我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”、如:粮库把运进30吨粮食记为“30+”,则“30-”表示( A )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食26.(2023福建)某仓库记账员为方便记账,将进货10件记作10+,那么出货5件应记作____5-_____.27.(2023随州)计算:(﹣2)2+(﹣2)×2= 0 .解析:(﹣2)2+(﹣2)×2=4+(﹣4)=0.28.(2023永州) -0.5,3,-2三个数中最小的数为___-2____.29.(2023甘肃)近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“9050+米”,那么海平面以下10907米记作“____10907-____米”.。
中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
中考数学总复习《实数》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.实数2的相反数是( )A.√2B.±2C.2D.-22.(2024·安顺一模)当前,手机移动支付已经成为新型的支付方式,中国正在向无现金支付发展.小明在妈妈的某软件零钱明细中看到,收入200元被记作+200元,则-35元表示( )A.收入35元B.支出35元C.收入165元D.支出165元3.在-3,-2,0,5四个数中,负数有( )A.4个B.3个C.2个D.1个4.(2024·贵阳二十八中二模)实数A,B,C,D在数轴上的对应点位置如图所示,这四个数中绝对值最小的是( )A.AB.BC.CD.D5.(2024·毕节金沙一模)据统计,2023年贵州省共接待游客128 400万人次.数据“128 400万”用科学记数法表示为( )A.12.84×104B.1.284×105C.12.84×108D.1.284×1096.计算2×(-1)的结果是( )A.-2B.-1C.0D.27.4的算术平方根是.8.比较大小:√73.(选填“>”“<”或“=”))0=.9.计算:(-1)2+(1310.已知a=√5,b=2,c=√3,则a,b,c的大小关系是( )A.b>a>cB.a>c>bC.a>b>cD.b>c>a11.写出一个比√2大且比√15小的整数为.12.计算:|√3-2|+2sin 60°-2 0230=.)0-|-3|.13.(2024·黔南一模)计算:√4+(-2314.(2024·铜仁万山三模)计算:2tan 45°+(-1)0+|√3-1|.2【B层·能力提升】15.(2024·毕节市金沙一模)下列四个数中,最大的数是( )A.-(-2 021)B.|-2 022|C.-|-2 023|D.-(+2 024)16.(2024·遵义一模)“好山好水迎贵客,最美遵义人气旺”,2024年春节假期,遵义市累计接待游客4 988 000人次,将数据“4 988 000”用科学记数法表示为4.988×10n,则n的值为( )A.5B.6C.7D.817.估计√21的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间18.有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a +b >0B.a -b >0C.ab >0D.a b <0 19.(2024·贵阳市云岩一模)石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.000 000 033 5 cm,将0.000 000 033 5这个数用科学记数法表示为( )A.3.35×10-9B.3.35×10-8C.33.5×10-9D.335×10-1020.(2024·镇远江古二模)计算:(-3)2+(-15)-1+(3-π)0.21.计算:(-6)×(23-■)-23. 圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(-6)×(23-12)-23.(2)如果计算结果等于6,求被污染的数字.【C 层·素养挑战】22.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A.8B.18C.28D.32参考答案【A层·基础过关】1.实数2的相反数是(D)A.√2B.±2C.2D.-22.(2024·安顺一模)当前,手机移动支付已经成为新型的支付方式,中国正在向无现金支付发展.小明在妈妈的某软件零钱明细中看到,收入200元被记作+200元,则-35元表示(B)A.收入35元B.支出35元C.收入165元D.支出165元3.在-3,-2,0,5四个数中,负数有(C)A.4个B.3个C.2个D.1个4.(2024·贵阳二十八中二模)实数A,B,C,D在数轴上的对应点位置如图所示,这四个数中绝对值最小的是(B)A.AB.BC.CD.D5.(2024·毕节金沙一模)据统计,2023年贵州省共接待游客128 400万人次.数据“128 400万”用科学记数法表示为(D)A.12.84×104B.1.284×105C.12.84×108D.1.284×1096.计算2×(-1)的结果是(A)A.-2B.-1C.0D.27.4的算术平方根是2.8.比较大小:√7<3.(选填“>”“<”或“=”))0=2.9.计算:(-1)2+(1310.已知a=√5,b=2,c=√3,则a,b,c的大小关系是(C)A.b>a>cB.a>c>bC.a>b>cD.b>c>a11.写出一个比√2大且比√15小的整数为2(或3).12.计算:|√3-2|+2sin 60°-2 0230=1.)0-|-3|.13.(2024·黔南一模)计算:√4+(-23【解析】原式=2+1-3=3-3=0.14.(2024·铜仁万山三模)计算:2tan 45°+(-1)0+|√3-1|.2【解析】原式=2×1+1+√3-1=2+1+√3-1=2+√3.【B层·能力提升】15.(2024·毕节市金沙一模)下列四个数中,最大的数是(B)A.-(-2 021)B.|-2 022|C.-|-2 023|D.-(+2 024)16.(2024·遵义一模)“好山好水迎贵客,最美遵义人气旺”,2024年春节假期,遵义市累计接待游客4 988 000人次,将数据“4 988 000”用科学记数法表示为4.988×10n,则n的值为(B)A.5B.6C.7D.817.估计√21的值在(C)A.2和3之间B.3和4之间C.4和5之间D.5和6之间18.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是(D)A.a+b>0B.a-b>0C.ab>0D.a<0b19.(2024·贵阳市云岩一模)石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.000 000 033 5 cm,将0.000 000 033 5这个数用科学记数法表示为(B)A.3.35×10-9B.3.35×10-8C.33.5×10-9D.335×10-10)-1+(3-π)0.20.(2024·镇远江古二模)计算:(-3)2+(-15【解析】原式=9+(-5)+1=9-5+1=5.21.计算:(-6)×(2-■)-23.3圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(-6)×(23-12)-23. 【解析】(1)(-6)×(23-12)-23=(-6)×16-8=-1-8=-9; (2)如果计算结果等于6,求被污染的数字.【解析】(2)设被污染的数字为x根据题意得:(-6)×(23-x )-23=6,解得:x =3 答:被污染的数字是3.【C 层·素养挑战】22.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A.8B.18C.28D.32。
初三数学实数练习题一、选择题(每题3分,共30分)1. 下列实数中,哪个是无理数?A. 0.33333...(3无限循环)B. 2C. √2D. 1/32. 计算下列实数的乘积,结果为正数的是?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-3) × (-2)3. 绝对值等于它本身的实数是?A. 0B. -5C. 5D. 以上都是4. 下列哪个选项表示的是相反数?A. 5 和 5B. 5 和 -5C. -5 和 5D. 0 和 05. 计算下列实数的和,结果为负数的是?A. -3 + 2C. -3 + (-2)D. 3 + (-2)6. 计算下列实数的差,结果为正数的是?A. 3 - 5B. -3 - 5C. 3 - (-5)D. -3 - (-5)7. 下列哪个实数的平方是正数?A. 0B. 1C. -1D. 以上都是8. 计算下列实数的商,结果为负数的是?A. 3 ÷ 2B. -3 ÷ 2C. 3 ÷ (-2)D. -3 ÷ (-2)9. 下列哪个实数的立方是负数?A. 0B. 1C. -1D. 以上都是10. 计算下列实数的绝对值,结果为3的是?A. 3B. -3D. -3/2二、填空题(每题4分,共20分)1. 计算 (-4) × (-5) 的结果为 _______。
2. 计算 7 - (-3) 的结果为 _______。
3. 计算 2²的结果为 _______。
4. 计算 |-6| 的绝对值为 _______。
5. 计算√9 的平方根结果为 _______。
三、解答题(每题10分,共50分)1. 计算下列实数的混合运算:(-2) × 3 + 4 × (-1) - 5²。
2. 计算下列实数的混合运算:(-3) × 2 - 6 ÷ (-3) + |-4|。
中考数学总复习《实数》专项测试卷附答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作( )A.+100℃B.-100℃C.+50℃D.-50℃2.-|-2024|的倒数是( )A.-2024B.2024C.-12024D.120243.有理数a,b在数轴上的表示如图所示,则下列结论正确的是( )A.-b<aB.ab>0C.|a|<|b|D.b+a<04.“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为( ) A.6×103 B.60×103C.0.6×105D.6×1045.下列四个数中,绝对值最大的是( )A.0B.-13C.-3D.√76.如图,数轴上表示√2的点是( )A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x <2,化简√(x -1)2+|x -2|的结果为( )A .-1B .1C .2x -3D .3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1= .9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为 .10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A.676B.674C.1 348D.1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025参考答案A层·基础过关1.(中国空间站位于距离地面约400 km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作(B)A.+100℃B.-100℃C.+50℃D.-50℃2.(2024·德州二模)-|-2024|的倒数是(C)A.-2024B.2024C.-12024D.120243. (2024·济南二模)有理数a,b在数轴上的表示如图所示,则下列结论正确的是(A)A.-b<aB.ab>0C.|a|<|b|D.b+a<04.(2024·青岛中考)“海葵一号”是我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60 000立方米.将60 000用科学记数法表示为(D)A.6×103B.60×103C.0.6×105D.6×1045.(2024·临沂二模)下列四个数中,绝对值最大的是(C)A.0B.-13C.-3D.√76.(2024·南充中考)如图,数轴上表示√2的点是(C)A.点AB.点BC.点CD.点D7.(2024·乐山中考)已知1<x<2,化简√(x-1)2+|x-2|的结果为(B)A.-1B.1C.2x-3D.3-2x8.(2024·重庆中考)计算:(π-3)0+(12)-1=3.9.(2024·泰安一模)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为2.780 9×104.10.(2024·深圳中考)计算:-2×(-3)-√9+|-2|-(1-π)0.【解析】原式=-2×(-3)-3+2-1=6+2-3-1=4.11.(2024·宿迁中考)计算:(π-3)0-2sin 60°+|-√3|.【解析】(π-3)0-2sin 60°+|-√3|=1-2×√32+√3=1-√3+√3=1. 12.(2024·云南中考)计算:70+(16)-1+|-12|-(√5)2-sin 30°. 【解析】70+(16)-1+|-12|-(√5)2-sin 30° =1+6+12-5-12 =2.B 层·能力提升13.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A .8B .18C .28D .3214.(2024·重庆中考)估计√12(√2+√3)的值应在(C)A .8和9之间B .9和10之间C .10和11之间D .11和12之间15.(2024·扬州中考)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为(D)A .676B .674C .1 348D .1 35016.(2024·上海中考)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25 GB,则蓝光唱片的容量是普通唱片的8×103倍.(用科学记数法表示)17.(2024·成都中考)若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1.18.(2024·潍坊一模)已知x是满足√10<x<√27的整数,且使√2x-6的值为有理数,则x=5.)-1+(π-2 022)0-3tan 30°+|√3-√2|.19.(2024·日照二模)计算:(12【解析】(1)-1+(π-2 022)0-3tan 30°+|√3-√2|2+√3-√2=2+1-3×√33=2+1-√3+√3-√2=3-√2.)-2.20.(2024·广元中考)计算:(2 024-π)0+|√3-2|+tan 60°-(12【解析】原式=1+2-√3+√3-4=3-4=-1.C层·素养挑战21.(2024·河北中考)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3 036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是(D)A.“20”左边的数是16B.“20”右边的“”表示5C.运算结果小于6 000D.运算结果可以表示为4 100a+1 025。
实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。
中考数学《实数》专项复习综合练习题-附带答案一、单选题1.关于√8的叙述正确的是()A.在数轴上不存在表示√8的点B.√8 = √2 + √6C.√8 =±2 √2D.与√8最接近的整数是32.下列运算中正确的是()A.√(−4)2=−4B.√9=±3C.√25=√5D.±√16=±43.若√x+y−1 +(y+2)2=0,则x﹣y的值为()A.﹣5 B.﹣1 C.1 D.54.已知a+3和2a﹣15是一个数的两个平方根则这个数是()A.4 B.7 C.16 D.495.如图,数轴上的点A、B、O、C、D分别表示数-2,-1,0 ,1,2,则表示数2−√5的点P应落在( )A.线段AB上B.线段BO上C.线段OC上D.线段CD上6.求一个正数的算术平方根有些数可以直接求得,如有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系运用规律求得.请同学们观察下表:n 0.09 9 900 90000 …0.3 3 30 300 …运用你发现的规律解决问题,已知≈1.435,则≈()A.14.35 B.1.435 C.0.1435 D.143.53.1415 ﹣3π 3.030030003…中无理数的个数是()7.下列数中﹣4 237A.1 B.2 C.3 D.48.一块正方形的瓷砖边长为√55cm它的边长大约在()A.4cm-5cm之间B.5cm-6cm之间C.6cm-7cm之间D.7cm-8cm之间二、填空题9.比较大小:﹣√3﹣π.210.若无理数a满足1<a<4 请你写出一个符合条件的无理数。
3﹣27的值为.11.已知√1−3a和|8b﹣3|互为相反数求√ab12.要生产一个底面为正方形的长方体形容器容积为128L(1L=1立方分米)使它的高是底面边长的2倍则底面边长为分米.13.4的算术平方根是.三、解答题14.计算:√3.(结果精确到0.01)(1)√2π).(结果精确到0.01)(2)3×π+4×(√2−34(3)3×√5−3×(√4+√5).15.已知x+1的平方根是±2 2x+y﹣2的立方根是2 求x2+y2的算术平方根.|−3|√3−π.16.在数轴上表示下列各数并用“<”连接.−221217.已知实数a的平方根为2x+11−7x√17的整数部分为b.(1)求a b的值;(2)若√17的小数部分为c 求25a−(b+c)2的平方根.18.阅读下列信息材料:信息1:因为无理数是无限不循环小数因此无理数的小数部分我们不可能全部地写出来比如:π、√2等而常用的“…”或者“≈”的表示方法都不够百分百准确.信息2:2.5的整数部分是2 小数部分是0.5 可以看成2.5﹣2得来的;信息3:任何一个无理数都可以夹在两个相邻的整数之间如2<√5<3 是因为√4<√5<√9:根据上述信息回答下列问题:(1)√13的整数部分是小数部分是.(2)10+ √3也是夹在相邻两个整数之间的可以表示为a<10+ √3<b则a+b=.(3)若√30﹣3=x+y 其中x是整数且0<y<1 请求x﹣y的相反数.参考答案1.D2.D3.D4.D5.B6.A7.B8.D9.<10.π11.﹣53212.413.214.(1)解:-1.02(2)解:5.66(3)解:-615.解:∵x+1的平方根是±2∴x+1=4∴x=3∵2x+y﹣2的立方根是2∴2x+y﹣2=8把x的值代入解得:y=4∴x2+y2=25∴x2+y2的算术平方根为5.16.解:如图所示<√3<|−3|.从小到大排列为:−22<−π<1217.(1)解:∵实数a 的平方根为2x +1 1−7x ∴2x +1+1−7x =0解得x =25∴2x +1=95即a =(95)2=8125∵√17的整数部分为b∴b =4;(2)解:∵b c 分别是√17的整数部分和小数部分 ∴b +c =√17∴25a −(b +c)2=25×8125−(√17)2=64 25a −(b +c)2平方根为±8.18.(1)3;√13 -3(2)23(3)解:∵25<30<36∴5< √30 <6∴5-3< √30 -3<6-3即2< √30 -3<3∴√30 -3的整数部分为2 小数部分为 √30 -3-2= √30 -5 ∴x=2 y= √30 -5∴x-y=2-( √30 -5)=7- √30∴x-y 的相反数为 √30 -7。
中考数学总复习《实数综合》专项测试卷(带参考答案)(考试时间:90分钟试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题每小题3分共30分)。
1.﹣83的相反数是()A.83B.﹣38C.D.【答案】A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解析】解:﹣83的相反数是83.故选:A.2.﹣11的相反数是()A.11B.﹣11C.D.﹣【答案】A【分析】依据相反数的定义求解即可.【解析】解:﹣11的相反数是11.故选:A.3.下列实数:﹣0.1010010001(每相邻两个1之间依次增加一个0) 3.14 中无理数的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称.即有限小数和无限循环小数是有理数而无限不循环小数是无理数.由此即可判定选择项.【解析】解:是分数属于有理数;3.14是有限小数属于有理数;无理数有:﹣0.1010010001...(每相邻两个1之间依次增加一个0)共4个.故选:D.4.下列各组数中互为倒数的是()A.1与﹣1B.与3C.﹣5与D.﹣3与|﹣3|【答案】C【分析】根据互为倒数的定义逐项进行判断即可.【解析】解:A.因为1×(﹣1)=﹣1≠1 所以1与﹣1不是互为倒数因此选项A不符合题意;B.因为=﹣1≠1 所以与3不是互为倒数因此选项B不符合题意;C.因为所以﹣5与是互为倒数因此选项C符合题意;D.因为(﹣3)×|﹣3|=﹣9≠1 所以﹣3与|﹣3|不是互为倒数因此选项D不符合题意.故选:C.5.在数轴上与﹣3的距离等于4的点表示的数是()A.1B.﹣7C.﹣1或7D.1或﹣7【答案】D【分析】此题注意考虑两种情况:该点在﹣3的左侧该点在﹣3的右侧.【解析】解:根据数轴的意义可知在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:D.6.﹣64的立方根是()A.﹣4B.±4C.﹣8D.±8【答案】A【分析】根据立方根的定义求解即可.【解析】解:∵(﹣4)3=﹣64∴﹣64的立方根是﹣4.故选:A.7.如图是加工零件的尺寸要求现有下列直径尺寸的产品(单位:mm)其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.01【答案】A【分析】依据正负数的意义求得零件直径的合格范围然后找出不符要求的选项即可.【解析】解:∵45+0.03=45.03 45﹣0.04=44.96∴零件的直径的合格范围是:44.96≤零件的直径≤45.03∵44.9不在该范围之内∴不合格的是A故选:A.8.2023年1月22日电影《流浪地球2》上映截止北京时间2023年2月10日总票房已达38.6亿元38.6亿用科学记数法表示为()A.3.86×108B.3.86×109C.38.6×1010D.0.386×1010【答案】B【分析】把38.6亿表示为:a×10n的形式其中1≤|a|<10 n为整数即可.【解析】解:∵38.6亿=3860000000=3.86×109故选:B.9.如图所示A B C D四点在数轴上分别表示有理数a b c d则大小顺序正确的是()A.a<b<c<d B.b<a<d<c C.a<b<d<c D.d<c<b<a【答案】B【分析】根据数轴的特征:一般来说当数轴方向朝右时右边的数总比左边的数大判断出有理数a b c d的大小关系即可.【解析】解:如图∵当数轴方向朝右时右边的数总比左边的数大∴b<a<d<c.故选:B.10.形如a1a2…a n﹣1a n a n﹣1…a2a1的自然数(其中n为正整数a1≤a2≤…a n﹣1≤a n a1>0 a1a2…a n 为0 1 … 9中的数字)称为“单峰回文数” 例如123454321 不超过5位的“单峰回文数”共有()个.A.273B.219C.429D.129【答案】B【分析】根据“单峰回文数”的定义确定一位的“单峰回文数”有9个;三位的“单峰回文数”有45个;五位的“单峰回文数”有165个即可确定不超过5位的“单峰回文数”共有9+45+165=219.【解析】解:∵一位的“单峰回文数”有9个:1 2 3…9;两位的“单峰回文数”有9个:11 22 33…99;三位的“单峰回文数”有45个:111 …191共9个222…292共8个依次减少1个总共为9+8+7+…+1=45;四位的“单峰回文数”有45个:9+8+7+…+1=45;五位的“单峰回文数”有165个:1+3+6+10+15+21+28+36+45=165;根据定义不可能出现两位和四位的数只能出现奇位数.∴不超过5位的“单峰回文数”共有9+45+165=219.故选:B.二、填空题(本题共6题每小题2分共12分)11.9的算术平方根是3.【答案】3.【分析】根据算术平方根的定义计算即可.【解析】解:∵32=9∴9的算术平方根是3故答案为:3.12.名句“运筹帷幄之中决胜千里之外”中的“筹”原意是指“算筹” 在我国古代的数学名著《九章算术》和《孙子算经》中都有记载.“算筹”是古代用来进行计算的工具之一它是将几寸长的小竹棍摆在平面上进行运算“算筹”的摆放有纵横两种形式(如图1).则图2中“算筹”表示的减法算式的运算结果为﹣6023.【答案】﹣6023.【分析】依题意得图2中“算筹”所表示的算式是:951﹣6974 然后计算即可得出结果.【解析】解:951﹣6974=﹣6023.故答案为:﹣6023.13.若|x|=4 |y|=5 则x﹣y的值为±1或±9.【答案】±1或±9.【分析】求出xy的值分为四种情况代入求出即可.【解析】解:∵|x|=4∴x=±4∵|y|=5∴y=±5当x=4 y=5时x﹣y=﹣1当x=4 y=﹣5时x﹣y=9当x=﹣4 y=5时x﹣y=﹣9当x=﹣4 y=﹣5时x﹣y=1.故答案为:±1或±9.14.比较大小:>4.【答案】见试题解答内容【分析】求出3=4=再进行比较即可.【解析】解:3==4=∵>∴3>4.故答案为:>.15.已知:[x]表示不超过x的最大整数.例:[4.8]=4 [﹣0.8]=﹣1.现定义:{x}=x﹣[x] 例:{1.5}=1.5﹣[1.5]=0.5 则{3.9}+{﹣1.8}﹣{1}= 1.1.【答案】1.1.【分析】根据题意列出计算式解答即可.【解析】解:根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2﹣0=1.1;故答案为:1.1.16.若3+的小数部分是a3﹣的小数部分是b则a+b=1.【答案】见试题解答内容【分析】先判断3+33﹣的在哪两个整数之间再用3+减去整数部分求出a3﹣减去整数部分求出b再相加求出结果.【解析】解:∵5<3+<6 0<3﹣<1∴3+的小数部分为:3+﹣5=﹣2 3﹣的小数部分为:3﹣∴a+b=﹣2+3﹣=1故答案为:1.三解答题(本题共7题共52分)。
专题01实数及其运算(31题)一、单选题1(2024·广东深圳·中考真题)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,a <b <0<c <d ,则最小的实数为a ,故选:A .2(2024·甘肃临夏·中考真题)下列各数中,是无理数的是()A.π2B.13C.327D.0.13133【答案】A【分析】本题考查无理数的定义,根据无理数是无限不循环小数结合立方根的定义,进行判断即可.【详解】解:A 、π2是无理数,符合题意;B 、13是有理数,不符合题意;C 、327=3是有理数,不符合题意;D 、0.13133是有理数,不符合题意;故选A .3(2024·福建·中考真题)下列实数中,无理数是()A.-3B.0C.23 D.5【答案】D【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001....,等数.【详解】根据无理数的定义可得:无理数是5故选:D .4(2024·四川内江·中考真题)16的平方根是()A.-4 B.4C.2D.±4【答案】D【分析】题考查了平方根,熟记定义是解题的关键.根据平方根的定义计算即可.【详解】解:16的平方根是±4,故选:D .5(2024·四川泸州·中考真题)下列各数中,无理数是()A.-13B.3.14C.0D.π【答案】D【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001⋯(两个1之间依次增加1个0),0.2121121112⋯(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .6(2024·山东·中考真题)下列实数中,平方最大的数是()A.3B.12C.-1D.-2【答案】A【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵32=9,122=14,-1 2=1,-2 2=4,而14<1<4<9,∴平方最大的数是3;故选A7(2024·山东烟台·中考真题)下列实数中的无理数是()A.23B.3.14C.15D.364【答案】C【分析】本题考查无理数,根据无理数的定义:无限不循环小数,叫做无理数,进行判断即可.【详解】解:A 、23是有理数,不符合题意;B 、3.14是有理数,不符合题意;C 、15是无理数,符合题意;D 、364=4是有理数,不符合题意;故选C .8(2024·四川眉山·中考真题)下列四个数中,无理数是()A.-3.14B.-2C.12D.2【答案】D【分析】本题考查的是无理数的概念,无理数即无限不循环小数,它的表现形式为:开方开不尽的数,与π有关的数,无限不循环小数.根据无理数的定义,即可得出符合题意的选项.【详解】解:-3.14,-2,12是有理数,2是无理数,故选:D .9(2024·广东·中考真题)完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.20【答案】B【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100÷4=25,∴正方形的边长为25=5,故选:B .10(2024·天津·中考真题)估算10的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【分析】本题考查无理数的估算,根据题意得9<10<16,即可求解.【详解】解:∵9<10<16∴3<10<4,∴10的值在3和4之间,故选:C .11(2024·四川自贡·中考真题)在0,-2,-3,π四个数中,最大的数是()A.-2B.0C.πD.-3【答案】C【分析】此题主要考查了实数大小比较的方法,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.【详解】解:根据实数比较大小的方法,可得:-2<-3<0<π,∴在0,-2,-3,π四个数中,最大的数是π,故选:C .12(2024·四川南充·中考真题)如图,数轴上表示2的点是()A.点AB.点BC.点CD.点D【答案】C【分析】本题考查了实数与数轴,无理数的估算.先估算出2的范围,再找出符合条件的数轴上的点即可.【详解】解:∵1<2<2,∴数轴上表示2的点是点C ,故选:C .13(2024·北京·中考真题)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b >-1B.b >2C.a +b >0D.ab >0【答案】C【分析】本题考查了是实数与数轴,绝对值的意义,实数的运算,熟练掌握知识点是解题的关键.由数轴可得-2<b <-1,2<a <3,根据绝对值的意义,实数的加法和乘法法则分别对选项进行判断即可.【详解】解:A 、由数轴可知-2<b <-1,故本选项不符合题意;B 、由数轴可知-2<b <-1,由绝对值的意义知1<b <2,故本选项不符合题意;C 、由数轴可知2<a <3,而-2<b <-1,则a >b ,故a +b >0,故本选项符合题意;D 、由数轴可知2<a <3,而-2<b <-1,因此ab <0,故本选项不符合题意.故选:C .14(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A.-3 -2=19B.a +b 2=a 2+b 2C.9=±3D.-x 2y 3=x 6y 3【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A . -3 -2=19,故该选项正确,符合题意;B. a+b2=a2+2ab+b2,故该选项不正确,不符合题意;C. 9=3,故该选项不正确,不符合题意;D. -x2y3=-x6y3,故该选项不正确,不符合题意;故选:A.15(2024·内蒙古包头·中考真题)若2m-1,m,4-m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<53【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:2m-1<m<4-m,解得:m<1;故选B.二、填空题16(2024·内蒙古赤峰·中考真题)请写出一个比5小的整数【答案】1(或2)【详解】试题分析:先估算出5在哪两个整数之间,即可得到结果.∵2=4<5<9=3,满足条件的数为小于或等于2的整数均可.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法.17(2024·四川广安·中考真题)3-9=.【答案】0【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3-9=3-3=0,故答案为:018(2024·广西·中考真题)写一个比3大的整数是.【答案】2(答案不唯一)【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.先估算出3的大小,再找出符合条件的整数即可.【详解】解:∵1<3<4,∴1<3<2,∴符合条件的数可以是:2(答案不唯一).故答案为:2.19(2024·内蒙古包头·中考真题)计算:38+-1 2024=.【答案】3【分析】本题考查实数的混合混算,先进行开方和乘方运算,再进行加法运算即可.【详解】解:原式=2+1=3;故答案为:3.20(2024·四川成都·中考真题)若m ,n 为实数,且m +4 2+n -5=0,则m +n 2的值为.【答案】1【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵m +4 2+n -5=0,∴m +4=0,n -5=0,解得m =-4,n =5,∴m +n 2=-4+5 2=1,故答案为:1.21(2024·安徽·中考真题)我国古代数学家张衡将圆周率取值为10,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小:10227(填“>”或“<”).【答案】>【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵227 2=48449,10 2=10=49049,而48449<49049,∴2272<10 2,∴10>227;故答案为:>22(2024·黑龙江绥化·中考真题)如图,已知A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,依此规律,则点A 2024的坐标为.【答案】2891,-3【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,据此可求得A 2024的坐标.【详解】解:∵A 11,-3 ,A 23,-3 ,A 34,0 ,A 46,0 ,A 57,3 ,A 69,3 ,A 710,0 ,A 811,-3 ⋯,,∴可知7个点坐标的纵坐标为一个循环,A 7n 的坐标为10n ,0 ,A 7n +110n +1,-3 ∵2024÷7=289⋅⋅⋅1,∴A 2023的坐标为2890,0 .∴A 2024的坐标为2891,-3 故答案为:2891,-3 .三、解答题23(2024·广东·中考真题)计算:20×-13+4-3-1.【答案】2【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:20×-13+4-3-1=1×13+2-13=13+2-13=2.24(2024·甘肃临夏·中考真题)计算:-4 -13-1+20250.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式=2-3+1=0.25(2024·福建·中考真题)计算:(-1)0+-5 -4.【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式=1+5-2=4.26(2024·江苏连云港·中考真题)计算|-2|+(π-1)0-16.【答案】-1【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式=2+1-4=-127(2024·江苏苏州·中考真题)计算:-4+-20-9.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式=4+1-3=2.28(2024·陕西·中考真题)计算:25--70+-2×3.【答案】-2【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:25--70+-2×3=5-1-6=-2.29(2024·四川乐山·中考真题)计算:-3+π-20240-9.【答案】1【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:-3+π-20240-9=3+1-3=1.30(2024·浙江·中考真题)计算:1 4-1-38+-5【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】1 4-1-38+-5=4-2+5=7.31(2024·湖北·中考真题)计算:-1×3+9+22-20240【答案】3【分析】本题主要考查了实数混合运算,根据零指数幂运算法则,算术平方根定义,进行计算即可.【详解】解:-1×3+9+22-20240水不撩不知深浅=-3+3+4-1=3.。
中考数学总复习《实数》专项测试卷-附带有参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.在π,√1121,√3,0.303003,−227中,无理数的个数是( )A.1个B.2个C.3个D.4个2.不小于−√8的最小整数是( )A.−3B.−2C.−4D.−13.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±14.下列说法正确的是( )A.4的平方根是±2B.8的立方根是±2C.√4=±2D.√(−2)2=−25.下列无理数中,与3最接近的是( )A.√6B.√8C.√11D.√136.下列判断正确的有( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③ √33是3的立方根;④无理数是带根号的数;⑤ 2的算术平方根是√2.A.2个B.3个C.4个D.5个7.如图,数轴上点A表示的数可能是( )A.3的算术平方根B.4的算术平方根C.7的算术平方根D.9的算术平方根8.估算9−√10的值,下列结论正确的是( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间二、填空题(共5题,共15分)9.已知m<2√7<m+1,m为整数,则m= .10.已知x,y是两个连续整数,z是面积为15的正方形的边长,且x<z<y,则y x=.11.如图是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算)12.已知实数a,b,c,d,e,f且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,则12ab+c+d5+e2+√f3的值是.13..在数轴上,如果点A、点B所对应的数分别为−√7,2√7,那么A,B两点的距离AB=.三、解答题(共3题,共45分)14.已知实数x,y满足关系式√x−2+∣y2−1∣=0.(1) 求x,y的值;(2) 判断√y+5x是有理数还是无理数?并说明理由.15.小丽手中有块长方形的硬纸片,其中长BC比宽AB多10cm,长方形的周长是100cm.(1) 求长方形的长和宽;(2) 小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为520cm2的新纸片作为他用,试判断小丽能否成功,并说明理由.16.某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场.已知篮球场的面积为420m2,其中长是宽的28倍,篮球场的四周必须留出15不少于1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?参考答案1. 【答案】B2. 【答案】B3. 【答案】D4. 【答案】A5. 【答案】B6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】510. 【答案】6411. 【答案】312. 【答案】61213. 【答案】−314. 【答案】(1) x=2y=±1.x=√6是无理数;(2) 若x=2,y=1时,√y+5x=√4=2是有理数.若x=2,y=−1时,√y+5x可能是有理数,也可能是无理数.∴√y+515. 【答案】(1) AB=20cm BC=30cm.(2) 设宽为4x cm则长为5x cm.所以5x⋅4x=520.解得x=√26.因为4x=4√26>20所以小丽不能成功.x m.16. 【答案】设篮球场的宽为x m,那么长为2815由题意知2815x2=420所以x2=225因为x为正数所以x=15.又因为(2815x+2)2=900<1000所以能按规定在这块空地上建一个篮球场.。