第4-1微波器件,连接元件
- 格式:ppt
- 大小:417.50 KB
- 文档页数:34
微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz (波长1m)至3000GHz(波长0.1m).微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.与低频区别:趋肤效应,辐射效应,长线效应,分布参数。
微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。
集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。
这类电路所涉及电路元件的电磁过程都集中在元件内部进行。
用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。
对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。
分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。
这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。
分布参数电路的实际尺寸能和电路的工作波长相比拟。
对于分布参数电路由传输线理论对其进行分析。
均匀传输线方程(电报方程):,传输线瞬时电压电流:特性阻抗:(无耗传输线R=G=0.)平行双导线(直径为d,间距为D):同轴线(内外导体半径a,b):相移常数:tt ziLt zRizt zu∂∂+=∂∂),(),(),(tt zuCt zGizt z i∂∂+=∂∂),(),(),()cos()cos(),(21zteAzteAt zu zzβωβωαα-++=-+)]cos()cos([1),(21zteAzteAZt zi zzβωβωαα-++=-+CjGLjRZωω++=dDZr2ln1200ε=abZrln600ε=λπωβ2==LC输入阻抗:反射系数:终端反射系数:输入阻抗与反射系数关系:驻波比:;1.行波状态沿线电压电流振幅不变,驻波比为1,终端反射系数0,传输线上各点阻抗等于传输线特性阻抗。
《微波与天线技术》课程考查报告任务书专业:通信工程班级:OX姓名:OOXX学号:XXOO二零一三年一月课程内容总结本书共分为十章,包括微波技术、天线与电波传播和微波应用系统三个部分。
第一至五章为微波技术部分,主要讨论了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础和微波元器件,其中在微波集成传输线部分主要讨论了带状线、微带线、耦合微带线及介质波导的传输特性,并对光纤的传输原理及特性做了介绍;在“微波元器件”一章中,从工程应用的角度出发,重点介绍了具有代表性的几组微波元器件,主要包括连接匹配元件、功率分配元器件、微波谐振元件和微波铁氧体器件。
第六至九章为天线与电波传播部分,主要叙述了天线辐射与接收的基本理论、电波传播概论、线天线及面天线,其中在线天线部分侧重介绍了在工程中常用的鞭天线、电视天线、移动通信基站天线、行波天线、宽频带天线、微带天线等,还对智能天线技术做了简要介绍。
微波应用系统安排在第十章,主要讨论了雷达系统、微波通信系统级微波遥感系统三个典型系统。
上述三部分既相互联系有相互独立,下面将做详细说明。
微波技术部分一、均匀传输线理论1、均匀传输方程及其解(1)均匀传输线方程⎪⎪⎭⎪⎪⎬⎫==++)()_()()_(i u z I z I Γz U z U Γ 对于时谐振电压和电流,可得时谐传输线方程式中,L j R Z ω+= C j G Y ω+= 分别称为传输线单位长串联阻抗和单位长并联导纳。
(2)均匀传输线方程的解z sh Z I z ch U z U γγ011)(+= z sh Z Uz ch I z I γγ011)(+=(3)传输线的工作特性参数特性阻抗0Z ;传播常数γ;相速p ν与波长λ。
2、传输线阻抗与状态参量(1)输入阻抗: 对无耗均匀传输线, 线上各点电压U(z)、 电流I(z)与终端电压U1、终端电流Il 的关系如下:(2)反射系数: 传输线上任意一点z 处的反射波电压(或电流)与入射波电(或电流)之比为电压(或电流)反射系数, 即:(3)输入阻抗与反射系数的关系 )](1[)()()(1z e A z U z U z U z j Γ+=+=-+β )](1[)()()(01_z e Z A z I z I z I zj Γ-=+=+β tt z u C t z Gu z t z i ∂∂+=∂∂),(),(),(t t z i L t z Ri zt z u ∂∂+=∂∂),(),(),()()(z YU dzZ dI =)()(z ZI dzZ dU =⎪⎭⎪⎬⎫+=+=)sin(j )cos()()sin(j )cos()(011011z Z U z I z I z Z I z U z U ββββ3、无线传输线的状态分析无线传输线有以下三种工作状态:①行波状态;②纯驻波状态;③行驻波状态。
微波器件的分类_微波器件的应用介绍
什么是微波器件是指工作在微波波段(频率为300~300000兆赫)的器件,称为微波器件。
微波器件按其功能可分为微波振荡器(微波源)、功率放大器、混频器、检波器、微波天线、微波传输线等。
通过电路设计,可将这些器件组合成各种有特定功能的微波电路,例如,利用这些器件组装成发射机、接收机、天线系统、显示器等,用于雷达、电子战系统和通信系统等电子装备。
微波器件的分类微波器件按其工作原理和所用材料、工艺不同,又可分为微波电真空器件、微波半导体器件、微波集成电路(固态器件)和微波功率模块。
微波电真空器件包括速调管、行波管、磁控管、返波管、回旋管、虚阴极振荡器等,利用电子在真空中运动及与外围电路相互作用产生振荡、放大、混频等各种功能。
微波半导体器件包括微波晶体管和微波二极管,具有体积小、重量轻、可*性好、耗电省等优点,但在高频、大功率情况下,不能完全取代电真空器件。
微波集成电路是将具有微波功能的电路用半导体工艺制作在砷化镓或其他半导体材料芯片上,形成功能块,在固态相控阵雷达、电子对抗设备、导弹电子设备、微波通信系统和超高速计算机中,有着广阔的应用前景。
微波器件的作用1.终端负载元件:为一端口互易元件,主要包括短路负载、匹配负载和失配负载
1)短路负载,要求:
(1)保证接触处的损耗小,
(2)当活塞移动时,接触损耗变化小;
(3)大功率时,活塞与波导壁间不应产生打火现象。
可用作调配器,纯电抗元件
结构方式:接触式、扼流式(金属片)
2)匹配负载。
第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S 得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。