74HC595详解
- 格式:docx
- 大小:11.17 KB
- 文档页数:3
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态.三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote control holding register。
描述 595是告诉的硅结构的CMOS器件, 兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f 0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况74HC595引脚图,管脚图________QB-—|1 16|——VccQC—-|2 15|--QAQD——|3 14|--SIQE—-|4 13|—-/GQF—-|5 12|--RCKQG--|6 11|—-SRCKQH-—|7 10|—-/SRCLRGND- |8 9|-—QH'|________|74595的数据端:QA—-QH: 八位并行输出端,可以直接控制数码管的8个段。
QH':级联输出端。
我将它接下一个595的SI端。
74HC595简介DS:串行数据输入,接Arduino的某个数字I/O引脚。
Q0~Q7:8位并行数据输出,可以直接控制8个LED,或者是七段数码管的8个引脚。
Q7′:级联输出端,与下一个74HC595的DS相连,实现多个芯片之间的级联。
SH_CP:移位寄存器的时钟输入。
上升沿时移位寄存器中的数据依次移动一位,即Q0中的数据移到Q1中,Q1中的数据移到Q2中,依次类推;下降沿时移位寄存器中的数据保持不变。
ST_CP:存储寄存器的时钟输入。
上升沿时移位寄存器中的数据进入存储寄存器,下降沿时存储寄存器中的数据保持不变。
应用时通常将ST_CP 置为低点平,移位结束后再在ST_CP端产生一个正脉冲更新显示数据。
MR:重置(RESET),低电平时将移位寄存器中的数据清零,应用时通常将它直接连高电平(VCC)。
OE:输出允许,高电平时禁止输出(高阻态)。
引脚不紧张的情况下可以用Arduino的一个引脚来控制它,这样可以很方便地产生闪烁和熄灭的效果。
实际应用时可以将它直接连低电平(GND)。
在一些不是很复杂的应用中,可以将MR和OE分别接VCC和地,只对DS、SH_CP和ST_CP三个引脚进行相关控制。
二 C语言程序#include<reg52.h>#include<intrins.h>#include<lcd.h>#define uchar unsigned char#define uint unsigned intsbit DS = P2^7;sbit SH_CP = P3^0;sbit ST_CP = P3^1;sbit duanx = P3^2;uchar disp_buffer[4];uchar const table[10]={48,49,50,51,52,53,54,55,56,57}; //1到9的ASCII码uchar const table2[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//共阴void remove_data(uchar Re_data);void lcd_init(void);void main(void){uint j = 0;uchar *s1 = "VALUE:",temp_data,disp_data,a;write_str(s1,0,0);write_str(s2,0,1);while(1){duanx = 0;a = table2[j++];remove_data(a);delay(100);disp_data = a;temp_data = disp_data/1000; writlcd();write_char(table[temp_data],7,0); temp_data = disp_data%1000/100; writlcd();write_char(table[temp_data],8,0); temp_data = disp_data%100/10; writlcd();write_char(table[temp_data],9,0); temp_data = disp_data%10;write_char(table[temp_data],10,0); if(j == 9 )j = 0;}}void remove_data(uchar Re_data){uint i;for(i=8; i>0; i--){if(Re_data&0x80)//判断高位是否为1 DS = 1;elseDS = 0;SH_CP = 0;_nop_();_nop_();SH_CP = 1;Re_data <<=1; //Re_data左移一位ST_CP = 0;_nop_();_nop_();ST_CP = 1; //上升沿将数据送到输出锁存器_nop_();_nop_();ST_CP = 0;}void lcd_init(void){lcd_rest();lcd_winst(0x01);set_cur(1);其中程序中红色部分便是对74HC595进移位和锁存操作。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点
8位串行输入
8位串行或并行输出
存储状态寄存器,三种状态
输出寄存器可以直接清除
100MHz的移位频率
输出能力
并行输出,总线驱动
串行输出;标准
中等规模集成电路
应用
串行到并行的数据转换
Remote control holding register.
描述
595是告诉的硅结构的CMOS器件,
兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存
储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据
C PD决定动态的能耗,
P D=C PD×V CC×f1+∑(C L×V CC2×f0)
F1=输入频率,C L=输出电容f0=输出频率(MHz)Vcc=电源电压
引脚说明
功能表
H=高电平状态L=低电平状态↑=上升沿
↓=下降沿
Z=高阻
NC=无变化
×=无效
当MR为高电平,OE为低电平时,数据在SH CP上升沿进入移位寄存器,在ST CP上升沿输出到并行端口。
74HC595芯片中文资料8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据符号参数条件TYP单位HC HCtt PHL/t PLH传输延时SHcp到Q7’STcp到Qn MR到Q7’C L=15pFVcc=5V161714212019NsNsNsf max STcp到SHcp最大时钟速度10057MHzC L输入电容Notes 1 3.53.5pF C PD Power dissipation Notes2 115 pFC PD 决定动态的能耗,P D =C PD ×V CC ×f 1+∑(C L ×V CC 2×f 0)F 1=输入频率,C L =输出电容 f 0=输出频率(MHz ) Vcc=电源电压 引脚说明 符号 引脚 描述 Q0…Q7 15, 1, 7 并行数据输出 GND 8 地Q7’ 9 串行数据输出 MR 10 主复位(低电平) SH CP11移位寄存器时钟输入ST CP12存储寄存器时钟输入OE13 输出有效(低电平) D S14串行数据输入capacitance per package.130V CC16 电源功能表输入输出功能SH CP ST CP OE MR D S Q7’Q n××L ↓×L NC MR为低电平时紧紧影响移位寄存器×↑L L ×L L 空移位寄存器到输出寄存器××H L ×L Z 清空移位寄存器,并行输出为高阻状态↑×L H H Q6’NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
74HC595引脚和原理说明74HC595是一款串行输入并行输出的移位寄存器芯片,常用于扩展微控制器的GPIO引脚数量。
它可以扩展输出引脚数量,实现同时控制多个设备的功能,而只使用微控制器上的几个引脚。
下面将详细介绍74HC595的引脚和原理。
1.DSRCK:数据输入时钟引脚,用于控制数据输入的时序。
2.SER:串行输入引脚,通过这个引脚输入数据。
3.RCLK:寄存器时钟引脚,用于将数据从移位寄存器传输到输出寄存器。
4.SRCLK:移位寄存器时钟引脚,用于控制移位寄存器的数据移位。
5.OE:输出使能引脚,控制输出寄存器是否被使能。
6.Q0-Q7:并行输出引脚,用于控制外部设备。
在工作原理方面,74HC595具有多个移位寄存器,其中有一个移位寄存器用于串行数据输入,另一个用于并行数据输出。
它通过移位寄存器实现了数据的移位和缓存功能。
当移位寄存器时钟(SRCLK)上升沿到来时,串行输入引脚(SER)上的数据被移位寄存器接收。
这样,在每个移位寄存器时钟周期内,数据从一个寄存器移动到下一个,直到移动到最后一个寄存器。
当寄存器时钟(RCLK)上升沿到来时,移位寄存器中的数据被存储到输出寄存器中。
这样,在每个寄存器时钟周期内,数据从移位寄存器传输到输出寄存器。
输出寄存器中的数据通过并行输出引脚(Q0-Q7)控制外部设备。
这些引脚可以连接到其他设备,例如LED、继电器、数码管等等。
通过编程控制输出寄存器的数据,可以实现对这些外部设备的控制。
然而,为了保护外部设备和减少功耗,输出使能引脚(OE)可用于控制输出寄存器是否被使能。
当该引脚为低电平时,输出寄存器被使能,数据可以传输到外部设备。
当该引脚为高电平时,输出寄存器被禁用,外部设备不受控制。
除了上述功能,74HC595还具有级联功能。
通过将多个74HC595连接在一起,可以扩展输出引脚的数量。
此时,第一个74HC595的输出引脚(Q0-Q7)连接到第二个74HC595的串行输入引脚(SER),以此类推。
74HC595简单工作原理74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
74HC595各个引脚的功能:Q1~7是并行数据输出口,即储寄存器的数据输出口Q7'串行输出口,其应该接SPI总线的MISO接口STcp存储寄存器的时钟脉冲输入口SHcp移位寄存器的时钟脉冲输入口OE的非输出使能端MR的非芯片复位端Ds串行数据输入端程序说明:每当spi_shcp上升沿到来时,spi_ds引脚当前电平值在移位寄存器中左移一位,在下一个上升沿到来时移位寄存器中的所有位都会向左移一位,同时Q7'也会串行输出移位寄存器中高位的值,这样连续进行8次,就可以把数组中每一个数(8位的数)送到移位寄存器;然后当spi_stcp上升沿到来时,移位寄存器的值将会被锁存到锁存器里,并从Q1~Q7引脚输出;附子程序:voidhc595send_data(uint8data)//要传输的数据,建议用数组的方法来查询{uint8i;IO0CLR=spi_stcp;12脚for(i=0;i<8;i++){IO0CLR=spi_shcp;11脚if((data&0x80)!=0)IO0SET=spi_ds;elseIO0CLR=spi_ds;data<<=1;IO0SET=spi_shcp;}IO0SET=spi_stcp;}1引言单片机应用系统中使用的显示器主要有LED和LCD两种。
近年来也有用CRT显示的。
前者价格低廉,配置灵活,与单片机接口方便;后者可进行图形显示,但接口较复杂,成本也较高。
74HC595芯片中文资料8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态,三态。
特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote control holding register.描述595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
参考数据C PD 决定动态的能耗,P D =C PD ×V CC ×f 1+∑(C L ×V CC 2×f 0)F 1=输入频率,C L =输出电容 f 0=输出频率(MHz ) Vcc=电源电压引脚说明功能表H=高电平状态 L=低电平状态↑=上升沿↓=下降沿Z=高阻NC=无变化×=无效当MR为高电平,OE为低电平时,数据在SHCP 上升沿进入移位寄存器,在STCP上升沿输出到并行端口。
74HC595完整中文资料74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、15QA—QH 三态输出管脚8 GND 电源地9 SQH 串行数据输出管脚10 SCLR 移位寄存器清零端11 SCK 数据输入时钟线12 RCK 输出存储器锁存时钟线13 OE 输出使能14 SI 数据线15 VCC 电源端真值表:输入管脚输出管脚SI SCK SCLR RCK OEX X X X H QA—QH 输出高阻X X X X L QA—QH 输出有效值X X L X X 移位寄存器清零L 上沿H X X 移位寄存器存储LH 上沿H X X 移位寄存器存储HX 下沿H X X 移位寄存器状态保持X X X 上沿X 输出存储器锁存移位寄存器中的状态值X X X 下沿X 输出存储器状态保持74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
74HC595 详解
工作电压2-6V,推荐5V。
14 脚串行输入:595 的数据来源只有这一个口,一次只能输入一个位,那
幺连续输入8 次,就可以积攒为一个字节了。
13 脚OE 输出使能控制脚:如果它不工作,那幺595 的输出就是高阻态,595 就不受我们程序控制了,这显然违背我们的意愿。
OE 的上面画了一条线,表示他是低电平有效。
于是我们将他接GND。
10 脚SRCLR 位移寄存器清空脚:他的作用就是将位移寄存器中的数据
全部清空,这个很少用到,所以我们一般不让他起作用,也是低电平有效,于是我们给他接VCC。
12 脚RCLK 存储寄存器:数据从位移寄存器转移到存储寄存器,也是需要
时钟脉冲驱动的,这就是12 脚的作用。
它也是上升沿有效。
11 脚SRCLK 移位寄存器时钟输入:当一个新的位数据要进来时,已经进
入的位数据就在移位寄存器时钟脉冲的控制下,整体后移,让出位置。
分析下数据输入和输出过程:
假如,我们要将二进制数据0111 1111 输入到595 的移位寄存器中,下面。