图论及其应用第4章
- 格式:ppt
- 大小:1.06 MB
- 文档页数:52
图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
图论及其应用班级:图论1班学院:软件学院学号:2014110993姓名:张娇图论从诞生至今已近300年,但很多问题一直没有很好地解决。
随着计算机科学的发展,图论又重新成为了人们研究讨论的热点,图形是一种描述和解决问题直观有效的手段,这里给出图论在现实生活中的一些应用。
虽然最早的图论问题追溯1736年(哥尼斯堡七桥间题),而且在19世纪关于图论的许多重要结论已得出。
但是直到20世纪20年代图论才引起广大学者的注意并得以广泛接受和传播。
图论即形象地用一些点以及点与点之间的连线构成的图或网络来表示具体问题。
利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。
图论就是研究图和网络模型特点、性质和方法的理论。
图论在许多领域,诸如物理、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学以及经济管理等各方面都有广泛的应用,它已经广泛地应用于实际生活、生产和科学研究中。
下面对最大流问题进行探究。
最大流问题主要探究最大流问题的Ford-Fulkerson解法。
可是说这是一种方法,而不是算法,因为它包含具有不同运行时间的几种实现。
该方法依赖于三种重要思想:残留网络,增广路径和割。
在介绍着三种概念之前,我们先简单介绍下Ford-Fulkerson方法的基本思想。
首先需要了解的是Ford-Fulkerson是一种迭代的方法。
开始时,对所有的u,v属于V,f(u,v)=0(这里f(u,v)代表u到v的边当前流量),即初始状态时流的值为0。
在每次迭代中,可以通过寻找一个“增广路径”来增加流值。
增广路径可以看做是从源点s到汇点t之间的一条路径,沿该路径可以压入更多的流,从而增加流的值。
反复进行这一过程,直到增广路径都被找出为止。
举个例子来说明下,如图所示,每条红线就代表了一条增广路径,当前s到t的流量为3。
当然这并不是该网络的最大流,根据寻找增广路径的算法我们其实还可以继续寻找增广路径,最终的最大流网络如下图所示,最大流为4。
图论综述一、简介图论是数学的一个分支。
它以图为研究对象。
图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。
集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。
通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。
图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。
关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。
目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。
图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。
二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。
其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。
紧接着讲解了最短路算法,定义设G为边赋权图。
u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。
图的代数表示,包括图的邻接矩阵和图的关联矩阵。
最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。
2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。
树是不含圈的无圈图,也是连通的无圈图。
树是图论中应用最为广泛的一类图。
在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。
图和子图 图和简单图图 G = (V, E)V ---顶点集,ν---顶点数12ε E ---边集, ε---边数例。
左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。
真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。
不过今后对两者将经常不加以区别。
称 边 ad 与顶点 a (及d) 相关联。
也称 顶点 b(及 f) 与边 bf 相关联。
称顶点a 与e 相邻。
称有公共端点的一些边彼此相邻,例如p 与af 。
环(loop ,selfloop ):如边 l 。
棱(link ):如边ae 。
重边:如边p 及边q 。
简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。
一条边的端点:它的两个顶点。
记号:νε()(),()().G V G G E G ==。
习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。
1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。
同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ VG)=V(H), E(G)=E(H)。
图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间 各 存在一一对应关系,且这二对应关系保持关联关系。
记为 G ≅F。
注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。
de f G = (V , E )yz w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。
完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。
V’ ( ⊆ V) 为独立集 ⇔ V’中任二顶点都互不相邻。