图论及其应用(精)
- 格式:doc
- 大小:47.50 KB
- 文档页数:4
图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
图论及其应用班级:图论1班学院:软件学院学号:2014110993姓名:张娇图论从诞生至今已近300年,但很多问题一直没有很好地解决。
随着计算机科学的发展,图论又重新成为了人们研究讨论的热点,图形是一种描述和解决问题直观有效的手段,这里给出图论在现实生活中的一些应用。
虽然最早的图论问题追溯1736年(哥尼斯堡七桥间题),而且在19世纪关于图论的许多重要结论已得出。
但是直到20世纪20年代图论才引起广大学者的注意并得以广泛接受和传播。
图论即形象地用一些点以及点与点之间的连线构成的图或网络来表示具体问题。
利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。
图论就是研究图和网络模型特点、性质和方法的理论。
图论在许多领域,诸如物理、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学以及经济管理等各方面都有广泛的应用,它已经广泛地应用于实际生活、生产和科学研究中。
下面对最大流问题进行探究。
最大流问题主要探究最大流问题的Ford-Fulkerson解法。
可是说这是一种方法,而不是算法,因为它包含具有不同运行时间的几种实现。
该方法依赖于三种重要思想:残留网络,增广路径和割。
在介绍着三种概念之前,我们先简单介绍下Ford-Fulkerson方法的基本思想。
首先需要了解的是Ford-Fulkerson是一种迭代的方法。
开始时,对所有的u,v属于V,f(u,v)=0(这里f(u,v)代表u到v的边当前流量),即初始状态时流的值为0。
在每次迭代中,可以通过寻找一个“增广路径”来增加流值。
增广路径可以看做是从源点s到汇点t之间的一条路径,沿该路径可以压入更多的流,从而增加流的值。
反复进行这一过程,直到增广路径都被找出为止。
举个例子来说明下,如图所示,每条红线就代表了一条增广路径,当前s到t的流量为3。
当然这并不是该网络的最大流,根据寻找增广路径的算法我们其实还可以继续寻找增广路径,最终的最大流网络如下图所示,最大流为4。
图论综述一、简介图论是数学的一个分支。
它以图为研究对象。
图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。
集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。
通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。
图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。
关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。
目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。
图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。
二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。
其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。
紧接着讲解了最短路算法,定义设G为边赋权图。
u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。
图的代数表示,包括图的邻接矩阵和图的关联矩阵。
最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。
2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。
树是不含圈的无圈图,也是连通的无圈图。
树是图论中应用最为广泛的一类图。
在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。
图和子图 图和简单图图 G = (V, E)V ---顶点集,ν---顶点数12ε E ---边集, ε---边数例。
左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。
真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。
不过今后对两者将经常不加以区别。
称 边 ad 与顶点 a (及d) 相关联。
也称 顶点 b(及 f) 与边 bf 相关联。
称顶点a 与e 相邻。
称有公共端点的一些边彼此相邻,例如p 与af 。
环(loop ,selfloop ):如边 l 。
棱(link ):如边ae 。
重边:如边p 及边q 。
简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。
一条边的端点:它的两个顶点。
记号:νε()(),()().G V G G E G ==。
习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。
1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。
同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ VG)=V(H), E(G)=E(H)。
图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间 各 存在一一对应关系,且这二对应关系保持关联关系。
记为 G ≅F。
注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。
de f G = (V , E )yz w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。
完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。
V’ ( ⊆ V) 为独立集 ⇔ V’中任二顶点都互不相邻。
数学中的图论及其应用图论是一门数学基础理论,用来描述事物之间的关联。
图论主要研究节点之间的连接关系和路径问题。
它的研究对象是图,图是由节点和边组成的,边表示节点之间的连接关系,节点表示事物。
图论是一种十分实用的数学工具,它是计算机科学、物理学、化学、生物学、管理学等领域的重要工具,也是人工智能和网络科学等领域的基础。
一、图论的基本概念1.1 图图是由节点和边组成的,表示事物之间的关系。
节点是图中的基本元素,用点或圆圈表示;边是连接节点的元素,用线或箭头表示。
1.2 有向图和无向图有向图是指边有方向的图,每一条边用有向箭头表示;无向图是指边没有方向的图,每一条边用线表示。
1.3 节点的度和邻居节点节点的度是指与节点相连的边的数量,具有相同度的节点称为同阶节点;邻居节点是指与节点相连的节点。
1.4 遍历和路径遍历是指从起点出发访问图中所有节点的过程;路径是指跨越边连接的节点序列,路径长是指路径中边的数量。
二、图论的应用2.1 网络科学网络科学是研究节点和边之间的关系,以及节点和边之间的动态演化的学科。
网络科学中的图模型是节点和边的结合体,其应用包括社会网络、生物网络和物理网络等。
社会网络是指人们之间的社交网络,它描述了人与人之间的关系。
社交网络可以用图模型表示,节点表示人,边表示人与人之间的互动关系,例如朋友关系、家庭关系等。
生物网络是指由生物分子构成的网络,例如蛋白质相互作用网络、代谢网络等。
在生物网络中,节点可以表示蛋白质或基因,边可以表示蛋白质或基因之间相互作用的联系,这些联系可以进一步探究生物进化和疾病发生的机理。
物理网络是指由物理粒子构成的网络,例如网络电子、量子态等。
在物理网络中,节点可以表示量子比特或电子,边可以表示色散力或超导电性等物理现象。
2.2 计算机科学图论在计算机科学中的应用非常广泛,例如数据结构、算法设计和网络安全等方面。
图论在计算机科学中的经典应用包括最短路径算法、最小生成树算法等。
数学中的图论理论及其应用图论是一门研究图形和网络的数学理论,它是数学中的一个分支,也是计算机科学中的一个重要领域。
图论的不断发展使其应用越来越广泛,尤其在计算机网络、社交网络、交通路线等方面有着广泛的应用。
一、图论的定义与性质图论中的“图”指的是一个有限的节点集合和与这些节点相关的边集合。
在图中,节点被称为顶点,边被称为边缘。
在一个无向图中,每条边连接两个节点,没有方向性;在有向图中,每条边都有一个方向,从一个节点指向另一个节点。
图所具有的一些性质,如连通性、路径、环等,可以用来研究现实世界中的许多问题。
例如,人际关系可以用图来表示,而在图中找到最短路径可以用来表示最小成本行程的问题。
二、图的表示方法图可以通过矩阵和链表两种方式进行表示。
矩阵表示法是将图中的节点和边分别用矩阵的元素表示,由于矩阵的性质,这种方法适用于表示边的权重,但对于节点的增加和删除比较麻烦。
链表表示法是将图中的节点和边分别用链表的形式表示,这种方法适用于动态改变图的结构。
三、最短路径算法最短路径算法是图论中的一个重要问题,它是计算图中两个节点之间最短路径的算法。
最短路径算法可以采用Dijkstra算法或Floyd算法进行计算。
Dijkstra算法是一种贪心算法,通过构建带权重的图来计算两个节点之间最短距离。
该算法的基本思想是从起点出发,按照距离最近的顺序找到与该节点相邻的节点,然后根据这些节点的权重更新起点到别的节点的距离,直至找到终点。
由于该算法使用优先队列来存储节点,因此对于大规模的节点数或边数较多的图,具有较好的计算效率。
Floyd算法是一种动态规划算法,通过构建带权重的图来计算两个节点之间最短距离。
该算法的基本思想是先计算任意两个节点之间的距离,然后再使用动态规划的思想,从中间节点出发更新两个节点之间的距离,直至找到终点。
由于该算法需要计算所有的两点之间的距离,因此对于较小规模的图具有优势。
四、最小生成树算法最小生成树算法是图论中另一个重要的问题,它是用来找到给定的无向联通图的一棵生成树,使得生成树中的边权和最小。
图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。
图由节点和连接节点的边组成,以解决现实生活中的许多问题。
本文将介绍图论的基本概念,并探讨它在不同领域中的应用。
一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。
节点和边可以有不同的属性,如权重、方向等。
2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。
3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。
4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。
二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。
最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。
2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。
在通信网络、电力输送等领域中,最小生成树被广泛应用。
3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。
例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。
三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。
利用图论分析社交网络,可以发现用户群体、影响力传播等信息。
2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。
中心节点的识别对于广告投放、信息传播等决策具有指导意义。
3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。
四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。
2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。
图论是数学中的一个分支,主要研究图及其相关的问题。
图由若干个节点和连接这些节点的边组成。
节点可以代表现实世界中的对象,而边则代表对象之间的关系。
图论的研究对象包括有向图、无向图、加权图等。
在图论中,节点常常被称为顶点,边则被称为弧或边。
图可以用各种方式表示,如邻接矩阵、邻接表等。
图论的研究内容主要包括图的遍历、最短路径、最小生成树、网络流以及图的染色等。
这些内容构成了图论的核心知识体系。
图论的应用非常广泛,涉及到许多领域。
在计算机科学中,图论被广泛应用于网络路由、图像处理、人工智能等领域。
例如,在网络路由中,图论可以用来寻找最短路径,以确定数据传输的最佳路径。
在图像处理中,图论可以用来进行图像分割,从而提取图像中的目标物体。
在人工智能中,图论可以用来构建知识图谱,从而实现知识的表示和推理。
除了计算机科学,图论还在物理学、生物学等领域中发挥着重要作用。
在物理学中,图论可以用来研究分子结构、粒子物理等问题。
例如,著名的色散关系图就是物理学中的一个重要概念,它描述了声波、电磁波等在介质中的传播特性。
在生物学中,图论可以用来研究蛋白质相互作用网络、基因调控网络等。
这些网络的研究有助于理解生物体内复杂的结构和功能。
此外,图论还在社交网络、交通规划、电路设计等领域中得到了广泛的应用。
在社交网络中,图论可以用来研究用户之间的连接关系,从而推荐好友、发现隐藏关系等。
在交通规划中,图论可以用来优化交通路径,减少拥堵现象。
在电路设计中,图论可以用来优化电路布线,提高电路的性能。
总而言之,图论是数学中一个重要的分支,有着广泛的应用领域。
它不仅在计算机科学中发挥着重要作用,还在物理学、生物学等领域中得到了广泛应用。
图论的发展不仅推动了数学理论的发展,也为各个领域的问题提供了有效的解决方法。
因此,学习和应用图论对于我们来说是非常重要的。
图论及其应用
学时:40 学分:2
课程属性:专业选修课开课单位:理学院
先修课程:高等代数后续课程:无
一、课程的性质
《图论及其应用》是数学与应用数学专业的专业选修课程。
二、教学目的
通过教学,使学生掌握图论及其算法的基本理论和基本技巧,初步掌握图论及其算法的基本应用手段、基本算法设计及编程,并能用所学理论解决一些应用问题。
三、教学内容
1.图的基本概念
2.图的连通性
3.树的基本性质及其应用
4.Euler Graphs and Hamilton Graphs with Applications
5.平面图性质
6.匹配,求最大匹配算法及应用
7.图的染色及应用
8.极图理论
四、学时分配
章课程内容学时
1 图的基本概念 4
2 图的连通性 6
3 树的基本性质及其应用 6
4 Euler Graphs and Hamilton Graphs with Applications 4
5 平面图性质 6
6 匹配,求最大匹配算法及应用 6
7 图的染色及应用 4
8 极图理论 4
合计40
五、教学方式
本课程采用多媒体课堂讲授,结合实际范例深入浅出讲解讨论。
六、考核方式
本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。
七、教材及教学参考书
参考教材:
[1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications, The Macmillan Press LTD,1976.
[2] 蒋长浩.图论与网络流.北京:中国林业出版社,2000.
参考书目:
[1] Bela Bollobas.Modern Graph Theory(现代图论,影印版).北京:科学出版社,2001.
[2] 殷剑宏、吴开亚.图论及其算法.合肥:中国科学技术大学出版社,2003.
[3] 谢金星、邢文训.网络优化.北京:清华大学出版社.2000.
[4] 程理民、吴江、张玉林.运筹学模型与方法教程.北京:清华大学出版社,2000.
[5] 三味工作室.SPSS V10.0 for Windows 实用基础教程.北京:北京希望电子出版社2001.
[6] 孙魁明、张海彤.Mathematica工具软件大全.北京:中国铁道出版社,1994.
[7] 楼顺天、于卫、闫华梁.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997.八、教学基本内容及要求
第一章图的基本概念
1.教学基本要求
掌握的图的基本概念、特殊图概念,了解最短路问题。
2.教学具体内容
图的基本概念,路和圈,最短路问题。
重点:图的概念;难点:最短路问题。
第二章图的连通性
1.教学基本要求
掌握割点、桥、块、连通度等概念,并了解连通图的基本特征。
2.教学具体内容
割点、桥和块,连通图。
重点:连通度、连通图等;难点:连通图的特征描述。
第三章树的基本性质及其应用
1.教学基本要求
掌握树的基本性质、Cayley公式等,了解连线问题、图的无圈子图分解等。
2.教学具体内容
树的基本性质,Cayley公式,连线问题,图的无圈子图分解。
重点:树的基本性质;难点:连线问题及无圈子图分解。
第四章 Euler Graphs and Hamilton Graphs with Applications 1.教学基本要求
掌握Euler图、Hamilton图等概念,了解中国邮递员问题。
2.教学具体内容
Euler图,Hamilton图,中国邮递员问题。
重点:Euler图、Hamilton图;难点:应用。
第五章平面图性质
1.教学基本要求
掌握Euler公式,了解平面图特征、不可平面图特征。
2.教学具体内容
Euler公式,平面图特征,不可平面图。
重点:Euler公式、平面图特征;难点:平面图特征、不可平面图。
第六章匹配,求最大匹配算法及应用
1.教学基本要求
掌握匹配、最大匹配、覆盖等概念,掌握最大匹配算法及应用。
2.教学具体内容
匹配,最大匹配的算法,覆盖,图的支配集。
重点:匹配、最大匹配;难点:最大匹配算法。
第七章图的染色及应用1.教学基本要求
掌握顶点染色、边染色、面染色等概念,并能简单应用。
2.教学具体内容
顶点染色,边染色,面染色。
重点:顶点染色;难点:应用。
第八章极图理论1.教学基本要求
掌握Ramsey数概念及应用。
2.教学具体内容
Ramsey数概念及应用,广义Ramsey数。
重点:Ramsey数概念;难点:Ramsey数应用。