图论及其应用 杨春 课件 全 电子科技大学
- 格式:ppt
- 大小:18.65 MB
- 文档页数:255
电子行业图论25电子科大杨春引言电子行业是指以电子技术为核心的一类产业,包括电子元器件制造、电子设备制造、电子信息服务等。
其中,电子科大(University of Electronic Science and Technology of China,简称电子科大)是中国著名的电子工科高校之一。
本文将介绍电子行业图论,并聚焦于电子科大杨春教授的研究成果。
电子行业图论简介图论是数学中的一个分支,研究的是图的性质和图的应用。
在电子行业中,图论被广泛应用在网络通信、电路设计等方面。
图是由顶点(节点)和边(连接线)构成的数据结构。
顶点表示对象,边表示对象之间的关系。
在电子行业中,顶点可以表示电子元器件、电子设备、节点等,边可以表示电子元器件之间的连接关系、电子设备之间的通信路径,以及节点之间的数据传输等。
图论通过研究图的性质和算法,为电子行业提供了很多解决方案。
例如,在网络通信中,图论可以用于路由算法的设计,以在复杂网络中寻找最短路径或者负载均衡;在电路设计中,图论可以用于布线算法的优化,以提高电子装置的性能和可靠性。
电子科大杨春教授的研究成果杨春教授是电子科大的杰出学者,他在电子行业图论方面的研究取得了很多重要成果。
以下将介绍杨春教授的两个主要研究成果。
成果一:基于图论的网络通信优化算法杨春教授在网络通信方面的研究中,提出了一种基于图论的优化算法,用于解决复杂网络中的路由问题。
该算法通过构建网络拓扑图,并基于图的特性,设计出高效的路由方案,可以同时考虑网络的负载均衡和数据传输的可靠性。
杨教授的算法在实际网络中进行了验证,取得了较好的效果,优化了网络通信的性能。
成果二:图论在电路设计中的应用杨春教授的另一个研究方向是图论在电路设计中的应用。
他提出了一种基于图论的布线算法,用于解决大规模电路的布线问题。
该算法通过将电路抽象为图,利用图的性质和算法进行布线优化,可以降低电路的时延、功耗等指标。
杨教授的算法在实际电路中得到了验证,对提高电子设备的工作效率和可靠性有重要意义。
图论第三次作业第六章习题2.证明:根据欧拉公式的推论,有m ≦l*(n-2)/(l-2),(1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4;(2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10;(3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6.3.证明:∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6;又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4.4.证明:(1)∵G 是极大平面图,∴每个面的次数为3,由次数公式:2m==3φ,由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6.(2)又∵m=n+φ-2,∴φ=2n-4.(3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。
5.证明:假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。
6.证明:(1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5.(2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5.8.证明:(1)由握手定理()2()i d v m n G δ=≥∑和极大可平面图的性质36m n =-,可得[6()]12G n δ-≥对4n ≥恒成立,又,所以6()3G δ-≤,即()3G δ≥。
习题四:3.(1)画一个有Euler 闭迹和Hamilton圈的图;(2)画一个有Euler闭迹但没有Hamilton圈的图;(3)画一个有Hamilton圈但没有Euler闭迹的图;(4)画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler 闭迹和Hamilton圈的图;(2)一个有Euler闭迹但没有Hamilton圈的图;(3) 一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.)+2,则G是Hamilton图。
4.设n阶无向简单图G有m条边,证明:若m≥(n−12证明: G是H图。
若不然,因为G是无向简单图,则n≥3,由定理1:若G是n≥3的非单图,则G 度弱于某个C m,n.于是有:2,1()()(2)(1)(1)2111(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ⎡⎤≤=+---+-⎣⎦-⎛⎫=+------- ⎪⎝⎭-⎛⎫≤+ ⎪⎝⎭这与条件矛盾!所以G 是H 图。
8.证明:若G 有2k ≥0个奇点,则存在k 条边不重的迹Q 1,Q 2…Q k ,使得E (G )=E (Q 1)∪E (Q 2)∪E (Q 3)∪⋯∪E(Q k ).证明:不失一般性,只就G 是连通图进行证明。
设G=(n, m)是连通图。
令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。
在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k):12()()()()k E G E Q E Q E Q =U UL U10.证明:若:(1)G 不是二连通图,或者(2)G 是具有二分类(X,Y )的偶图,这里|X |≠|Y |,则G 是非Hamilton 图。