第4课分立元器件设计1
- 格式:ppt
- 大小:454.00 KB
- 文档页数:23
一、实验目的1. 熟悉分立元器件的基本特性和工作原理。
2. 掌握分立元器件在电路中的应用方法。
3. 培养电路搭建、调试和故障排除能力。
二、实验器材1. 电阻、电容、电感等基础分立元器件2. 晶体管(NPN、PNP)、场效应管、二极管等特殊分立元器件3. 万用表、信号发生器、示波器等测量仪器4. 电路板、导线等搭建工具三、实验内容1. 基础分立元器件特性测试- 电阻:测试不同阻值的电阻,观察其伏安特性。
- 电容:测试不同容值的电容,观察其伏安特性。
- 电感:测试不同感值的电感,观察其伏安特性。
2. 晶体管特性测试- NPN型晶体管:测试其输入特性、输出特性和转移特性。
- PNP型晶体管:测试其输入特性、输出特性和转移特性。
3. 场效应管特性测试- 结型场效应管:测试其漏源特性、转移特性和栅源特性。
- 晶体管场效应管:测试其漏源特性、转移特性和栅源特性。
4. 二极管特性测试- 晶体二极管:测试其伏安特性。
- 整流二极管:测试其伏安特性。
5. 分立元器件在电路中的应用- 电阻在电路中的应用:限流、分压、滤波等。
- 电容在电路中的应用:滤波、耦合、去耦等。
- 电感在电路中的应用:振荡、滤波、变压器等。
- 晶体管在电路中的应用:放大、开关、稳压等。
- 场效应管在电路中的应用:放大、开关、稳压等。
- 二极管在电路中的应用:整流、稳压、开关等。
四、实验步骤1. 根据实验要求,搭建相应的电路。
2. 使用万用表测量各元器件的参数,如电阻、电容、电感等。
3. 使用示波器观察电路的输出波形,如放大电路的输出波形。
4. 分析实验数据,总结实验结果。
五、实验结果与分析1. 通过测试,掌握了不同分立元器件的基本特性和工作原理。
2. 学会了如何搭建和调试分立元器件电路。
3. 掌握了分立元器件在电路中的应用方法。
4. 通过实验,提高了电路分析、设计和调试能力。
六、实验总结本次实验使我们对分立元器件有了更深入的了解,掌握了分立元器件的基本特性和工作原理,以及它们在电路中的应用方法。
用分立元器件制作一个迷你功放,小身材,大功率
音频信号功率放大电路,简称功放。
几乎所有的音频设备都离不开功放电路,比如手机功放电路需要将接收到的微弱信号放大,以便能听清对方
“分立元件”功放电路图
所需元器件清单
耳机插孔用“J”表示。
还需要一条3.5mm插头的音频线,用于将手机或者电脑的音频信号引入到耳机插孔,便于音频信号放大。
。
音频信号经过电容C1耦合,三极管VT1前级放大,调整Rp 至VT2、VT3中点电压(电源电压的一半),当音频信号为负半周时,三极管VT1截止,VT2导通、VT3截止,电源电压正极经过VT2的集电极、发射极、电容C2、扬声器、电源负极,该时段为电容C1充电;当音频信号为正半周时,三极管VT1导通,VT3导通、VT2截止。
C2放电回路:C2的正极,三极管VT3的发射极、集电极、电源负极、扬声器,C2的负极。
这样在扬声器上就获得一个完整的音频波形。
这是非常简单的迷你音频功放,但是美中不足的是,音质不是很好,如何解决这个问题呢?这个时候就该集成功放块出场了。
耳机插孔一共5个引脚,在面包板上组装只用了两个引脚,怎样区分呢?
图中的是立体声耳机插座,可以输出两个声道信号(左右声道),我们只需要一个声道的信号来完成制作,
耳机接线示意图,这个电路太难了,而且我们听说虽然已经放大了,可是声音还是比较小,手机里面也是这样的电路吗?
我们先制作分立元件的功放,是为了初步明白它的工作原理,手机内不是这样的电路,它是采用集成电路放大信号。
有一款小功放集成块,它的型号是LM386,电子制作人对它非常青睐,适合初学者DIY。
用分立元件设计制作功率放大器功率放大器是一种电路,用于将信号放大到较高功率水平。
通常用于音频放大器、无线电发射器等应用中。
在设计和制作功率放大器时,需要考虑多个因素,包括输入/输出阻抗匹配、功率放大倍数、线路稳定性等。
在设计和制作功率放大器时,首先需要确定所需的功率放大倍数。
根据应用需求,确定输出功率的大小。
然后根据所需的功率放大倍数和输入/输出阻抗来选择适当的电子元件。
常见的功率放大器电路包括B类、AB类、C类和D类放大器。
B类功率放大器以其高效率和良好的线性特性而被广泛采用。
它由一对互补的晶体管组成,一个负责处理正半周信号,另一个负责处理负半周信号。
由于晶体管在没有输入信号时处于截止状态,它们只在需要放大时才消耗功率,从而提高了效率。
在设计过程中,需要选择适当的晶体管来匹配所需的功率输出。
可以通过查找晶体管的数据手册来了解其性能和特性。
考虑晶体管的最大功率处理能力、电流增益和频率响应等参数,并与所需功率放大倍数进行匹配。
另一个关键方面是输入/输出阻抗的匹配。
为了更好地传输信号和最大化功率输出,需要确保输入/输出阻抗与所用晶体管和负载的阻抗相匹配。
一种常见的方法是使用匹配网络,例如使用L型网络、pi型网络等。
线路的稳定性也是一个重要考虑因素。
在大幅度的放大过程中,可能会出现震荡或不稳定的情况。
为了解决这个问题,可以在电路中添加一个稳定器电路,例如负反馈电路。
这样可以提高电路的稳定性和线性度。
在制作功率放大器时,需要注意电路布局和散热。
由于功率放大器通常会产生大量的热量,因此需要确保散热器的使用以维持元件的正常工作温度。
电路的布局也需要合理,以减少干扰和交叉耦合。
除了以上要点,还有许多其他因素需要考虑,例如功率供应、RF功率分配、滤波等。
设计和制作功率放大器是一项复杂的任务,需要充分的电子电路知识和实践经验。
总之,设计和制作功率放大器需要确定所需功率放大倍数、选择适当的晶体管、匹配输入/输出阻抗、保持线路稳定性和散热等。
用分立元件设计放大器教程一、功率放大器基本电路特点互补对称式OTL功率放大器基本电路如图①所示。
其中:C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。
R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。
要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。
C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。
按照32V电源电压值和Ic1为2mA 进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。
R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。
简化电路中省略使用一只二极管。
并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。
BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。
用分立元件设计制作功率放大器教程第一步:功率放大器的基本原理在开始设计和制作功率放大器之前,我们首先需要了解功率放大器的基本原理。
功率放大器是一种能够将输入信号的功率放大到较大值的电路,它由信号输入端、电源以及输出负载组成。
功率放大器的主要任务是提供足够的功率给输出负载,以使得输出信号能够以理想的形式呈现。
第二步:选取合适的放大器类型根据不同的应用需求,我们需要选择适合的功率放大器类型。
常见的功率放大器类型包括B类、A类、AB类等。
在选择时,我们需要考虑功率放大器的效率、线性度以及成本等因素。
第三步:确定放大器的规格要求根据具体的应用需求,我们需要确定功率放大器的规格要求。
这包括输出功率、频率响应、失真度以及输入输出阻抗等。
规格要求的确定将有助于我们选择合适的元器件和设计电路。
第四步:选取适合的分立元件根据放大器的规格要求,我们需要选取适合的分立元件来实现电路设计。
这些分立元件包括晶体三极管、功率二极管、电容、电感等。
在选择元件时,我们需要考虑其参数、价格、可获得性以及性能等因素。
第五步:进行电路设计在选取了适合的分立元件后,我们可以开始进行功率放大器的电路设计。
电路设计的关键是根据电路模型和参数,合理选择元件的阻值、容值以及元件之间的连接方式。
这需要一定的电路基础知识和经验。
第六步:制作电路板在电路设计完成后,我们需要将电路设计转化为实际的电路板。
这一步包括进行电路板布局设计和电路板制造。
电路板布局设计需要合理地安排元件的位置和连接方式,以减少信号干扰和噪声。
电路板制造可以选择自行制作或者委托专业的制造厂家进行。
第七步:组装和调试在电路板制作完成后,我们需要进行电路的组装和调试。
这包括将元件焊接到电路板上,并进行必要的电路连通性测试和性能测试。
通过调试,我们可以检测和修正电路中的问题,以确保功率放大器的正常工作。
第八步:性能评估和优化通过进行性能评估和优化,我们可以进一步改进功率放大器的性能。