分立元件放大电路资料
- 格式:ppt
- 大小:4.47 MB
- 文档页数:136
详解分立元器件OTL功率放大器电路图2-46所示是分立元器件构成的OTL功率放大器。
OTL功率放大器采用互补推挽输出级电路。
OTL功率放大器种类较多,这里以OTL音频功率放大器为例,详细介绍这种放大器的工作原理。
图2-46 分立元器件构成的OTL 功率放大器电路中,VT1构成推动级放大器;VT2和VT3构成互补推挽输出式放大器,VT2是NPN型三极管,VT3是PNP型三极管。
直流电路分析电路中,推动级与功放输出级之间采用直接耦合电路,所以两级放大器之间的直流电路相互影响。
这一放大器的直流电路比较复杂,分成以下几个部分分析。
1.电路启动分析接通直流工作电源瞬间,+V经R2和R3给VT2基极提供偏置电压,使VT2发射极有直流电压,这一电压经R4和R1分压后加到VT1基极,给VT1提供静态直流偏置电压,VT1导通。
VT1导通后,其集电极(C点)电压下降,也就是VT3基极电压下降,当放大器输出端A点电压大于C点电压时,VT3也处于导通状态,这样电路中的3只三极管均进入导通状态,电路完成启动过程。
2.静态电路分析接通直流电源瞬间,很快放大器进入稳定的静态,此时A点电压等于直流电源电压+V的一半,如果+V等于12V,放大器输出端(A点)的直流电压等于6V。
这是OTL功率放大器的一大特征,了解和记住这一点对检修OTL功率放大器很有用,如果测量A点电压不等于+V的一半,说明OTL功率放大器已经出现故障。
3.VT2和VT3直流电压供电电路分析对直流电流而言,VT2和VT3是串联的,所以只有+V的一半加到了每只三极管的集电极与发射极之间,而不是+V的全部。
功率放大器中,电路的直流工作电压大小直接关系到放大器的输出功率大小,+V愈大放大器的输出功率愈大。
所以,对于OTL功率放大器而言,由于每只三极管的有效工作电压只有+V的一半,要求有更大的直流工作电压+V才能有较大的输出功率,这是OTL功率放大器电路的一个不足之处。
分立元件OCL功率放大电路原理分析OCL是英文Output Capacitor Less的缩写,意思是没有输出电容器。
OCL功率放大电路一般采用正、负对称的两组电源供电,电路内部直到负载扬声器全部采用直接耦合,中间无输入、输出变压器(人们将不用输入和输出变压器的功率放大电路称为单端推挽电路),也不需要输出电容器,其好处是通频带宽,信号失真最低。
(1)OCL功率放大器的结构组成功率放大器的结构如图1所示。
OCL功率放大电路分为输入级、激励级、功率输出级三级,此外还有为稳定电路工作而设置的负反馈网络和各种补偿电路,有些还设置有过载保护电路。
图2是一种实际的功放电路,早期一些低档功放机器采用了这一电路。
下面结合该电路来认识一下功率放大器的各组成部分。
1)输入级:输入级主要起缓冲作用。
输入级多采用差分对管放大电路(也有采用运算放大电路的),通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。
差分放大器由两个特性相同的放大电路组成,其左、右两管的参数几乎完全相同。
这种电路具有很高的稳定性,能抑制“零点漂移”,保证输出级中点电压的稳定。
有些功放机器的差动管发射极采用恒流源电路,常见的有二极管和三极管组成的恒流源和两个三极管组成的镜像恒流源。
输入级采用小功率管,工作在甲类状态,静态电流较小。
2)激励级:激励级的作用是给功率输出级提供足够的激励电流及稳定的静态偏压,整个功率放大器的增益主要由这一级提供。
多数功放机的激励级采用单管放大电路,也有少数机器采用差分对管放大电路。
这一级常采用恒流源负载,不仅能得到较高的电源抑制特性,而且具有工作状态稳定、线性好、失真度低等优点。
激励级也是用小功率管,工作在甲类状态。
另外,激励级还要为后一级(功率输出级)提供稳定的偏置电压。
功率输出级的偏置电压电路有多种类型。
最简单的偏置电路是由激励管的集电极负载电阻构成的,其热稳定性和稳压性都比较差;有些功放采用恒压偏置电路,即由多个二极管串联而成的稳压钳位电路,使功率输出级的偏置电压保持稳定;而更多的则是采用带温度补偿的恒压偏置电路,这种偏置电路由一个三极管和几个电阻组成。
操作放大器,常被称为op—amp,是许多电子电路的关键构件。
在本篇文章中,我们将探讨具有离散组件的基本op—amp电路的工作原则。
让我们看看一个op—amp的内部结构。
它一般由三个终端组成:倒置输入(标签为"−"),非倒置输入(标签为"+"),输出。
它还包含正负电压的供电连接。
op—amp的关键特征是其高增益和差分输入,这意味着输出电压对两个输入电压的差异高度敏感。
op—amp可以用于多种配置,例如反向放大器,非反向放大器,差分放大器,以及集成器等等。
在这里,我们将专注于反向放大器配置,这是op—amp的基本和广泛应用。
在简单的反向放大器电路中,op—amp与一个反馈网络相连接,通常包括一个电阻器。
op—amp的反向输入通过电阻器与输入信号连接,反馈电阻器将输出与反向输入连接。
非倒置输入常被定位为单限输入信号。
当一个电压信号被应用到反转输入时,Op—amp会放大电压并产生输出信号。
放大器的增益由反馈电阻器与输入电阻器的比量决定,这可以用公式Av=—Rf、Rin计算,其中Av是电压增益,Rf是反馈电阻器,Rin是输入电阻器。
在理想的op—amp中,收益是无限的,输入阻碍是无限的,意味着没有流流流入倒置输入。
然而,在现实中,op—amp具有有限的收益和输入阻力,以及抵消电压和电流,这需要在实用电路设计中加以考虑。
让我们考虑一个应用,一个反向放大器用来放大传感器的弱信号。
op—amp电路为提升传感器信号提供了必要的收益,使其适合电子系统中的进一步处理。
简而言之,具有离散组件的基本op—amp电路以高收益和差分输入的原则运作。
特别是反向放大器的配置,为扩展输入信号,精确控制收益提供了方便的方法。
了解op—amp电路的工作原则对电子系统的设计和故障排除至关重要。
操作放大器是多功能组件,在电子电路中发挥关键作用,其工作原理是工程师和电路设计师的基本知识。
反向放大器的电路尤其表明在信号放大中应用了op—amp,对收益有精确的控制。
场景描述OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。
本任务流程如图3-1-1所示。
一、实训工具及器材准备完本钱次实训任务所需工具及器材见表3-1-1。
〔一〕电路原理的熟悉图3-1-1 任务流程图典型OTL 音频功率放大器组装与维修1、电路特点图3-1-2简易OTL功放电路原理图本功放电路构造简单,元件易购,本钱低廉,原理典型,非常适合初学者组装学习。
电路包括:A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。
B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放局部来推动喇叭。
图中以VT3、VT4为核心组成的电路完成功率放大功能。
C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。
图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。
改变R8的阻值可以改变功放管的静态电流。
D.负反响电路:利用负反响的特性,控制整个放大电路的增益,提高电路稳定性。
其中R4为放大器提供交直流负反响,R5、C4对反响的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。
2、电路原理和各元件的作用音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。
第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。
R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压〔正常要求为电源电压的一半〕。
C3为输入隔直耦合电容。
R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进展放大。