双曲型方程的差分方法(精)
- 格式:doc
- 大小:610.50 KB
- 文档页数:7
双曲守恒律方程及其差分方法嘿,朋友们!今天咱来聊聊双曲守恒律方程及其差分方法。
你说这双曲守恒律方程啊,就像是个调皮的小精灵,总是在数学的世界里蹦来蹦去,让人又爱又恨。
它描述的那些物理现象,就好像是一场奇妙的冒险,充满了未知和惊喜。
想象一下,各种物质的流动、变化,都能被这双曲守恒律方程给捕捉到。
它就像一个超级敏锐的观察者,不放过任何一个细微的动态。
而这差分方法呢,就像是给这个小精灵套上了缰绳,让我们能够更好地驾驭它,去探索那些神秘的领域。
你看啊,差分方法就像是一把神奇的钥匙,能打开双曲守恒律方程背后隐藏的秘密。
它通过巧妙的计算和分割,把复杂的问题变得简单易懂。
这就好比我们走路,一步一步稳稳当当,把长长的路给走完。
比如说,在研究流体流动的时候,双曲守恒律方程就发挥着重要作用。
差分方法能让我们更准确地预测流体的行为,就像是能提前知道水流会往哪里拐,风会往哪里吹。
这多厉害呀!要是没有这差分方法,那我们对这些自然现象的理解可就要大打折扣了。
而且啊,这双曲守恒律方程和差分方法可不是孤立存在的。
它们就像一对好搭档,相互配合,共同攻克一个又一个难题。
就好像篮球场上的队友,互相传球,一起为了胜利而努力。
咱再想想,要是没有对双曲守恒律方程及其差分方法的深入研究,那很多现代科技还能发展得这么快吗?那些酷炫的特效、精确的模拟,不都得靠它们嘛!这可不是随便说说的,这是实实在在的贡献啊!双曲守恒律方程及其差分方法,它们不仅仅是数学中的概念,更是打开科学大门的重要工具。
它们让我们能够更深入地理解这个世界,让我们的生活变得更加丰富多彩。
所以说啊,别小看了这双曲守恒律方程及其差分方法。
它们就像是隐藏在数学世界里的宝藏,等待着我们去发掘,去探索。
它们的价值和意义,远远超出了我们的想象。
总之,双曲守恒律方程及其差分方法,那可是相当重要啊!我们可得好好研究,好好利用,让它们为我们的生活带来更多的惊喜和进步!这就是我对它们的看法,你们觉得呢?。
双曲型方程的有限差分法§0 预备知识0.1双曲型方程的常见类型: (1)、一阶线性双曲型方程()0u ua x t x∂∂+=∂∂ (2)、一阶常系数线性双曲型方程组0u u A tx∂∂+=∂∂其中u 为未知函数向量,A 为p 阶常数方阵。
(3)、二阶线性双曲型方程(波动方程)一维 22(())0u ua x x x t∂∂∂-=∂∂∂ a (x )为正值函数二维 222222()0u u ut x y∂∂∂-+=∂∂∂三维 22222222()0u u u ut x y z∂∂∂∂-++=∂∂∂∂(4)、对流扩散方程()()(())(,)u u u c x b x a x f x t t x x x∂∂∂∂+-=∂∂∂∂ 等等。
这些方程的定解条件,可以是仅有初始条件,也可以是初始条件与边界条件的混合。
如对波动方程(一维),有 (1)、初值问题2222201,0(,0)()(,0)()u u a x t Tt xu x x x u x x x tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=-∞<<∞<≤∂∂=-∞<<∞∂=-∞<<∞∂(2)、混合问题第一类:222220101,0(,0)()01(,0)()01(0,)(1,)00t u u a x t Tt x u x x x u x x x u t u t t Tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=<<<≤∂∂=≤≤=≤≤==<≤第二类:边界条件改为:(0,)0,(1,)0,0u u t t t T x∂==<≤∂第三类:边界条件改为:(1,)(0,)0,(1,)00u t u t u t t T xα∂=+=<≤∂0.2 波动方程及其特征线性双曲型方程的最简模型:波动方程初值问题22222,0,.u u a a x t x∂∂=>-∞<<∞∂∂ (1) 0(,0)()u x x ϕ= 1(,0)()t u x x ϕ=下面讨论它的特征和解析解。
41-波动方程的差分逼近第五章 双曲型方程的有限差分法 4.1 波动方程的差分逼近 1. 特征针对波动方程22222u u a t x ∂∂=∂∂ (1) 其初值条件为 01(,0)(),(,0)(),t u x x u x x x ϕϕ==-∞<<∞其中0a >是常数。
其相应的特征方程为characteristic equation 2220dx a dt -= 即 221()0dt a dx-= 得到两个特征方向:characteristic direction1dt dx a=± (3) 解(3),得到两族直线: 12,x at c x at c -=+= 2. 显格式取空间步长h 及时间步长τ,用两族平行直线two family of parallel lines,0,1,2,j x x jh j ===±±L,0,1,2,n t t n n τ===L作矩形网格rectangle 。
在(,)j n x t 对方程(1)离散,得到111122222,0,1,2,,,1,2,n n n n n nj j jj j j u u u u u u aj n h τ+-+--+-+==±±L L (5.1)初始条件为00()j j u x ϕ= (5.2)101()j jj u u x ϕτ-= (5.3)(5.1)式逼近的截断误差为22()h τO +。
由于(5.3)式逼近截断误差为()τO ,因此对(5.3)的逼近可作适当改进。
(5)可显示算出各网点的值。
(5.1)简化后可以写成122111()2n n n n n j j j j ju r u u r u u +--+=++-(1-) (6) 针对混合问题:2222201,0,0,(,0)(),(,0)(),(0,)(),(,)().t u ua x l t T t x u x x u x x u t t u l t t ϕϕαβ⎧∂∂=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩此时取空间步长l h J =及时间步长TNτ=,同样建立离散格式(5),针对边值条件,可给出离散的边值条件(),().nn l u n u n ατβτ==3. 稳定性分析为了利用Fourier 方法,令uv t∂=∂,将(1)化成一阶偏微分方程组: 222uv tv u a tx ∂⎧=⎪⎪∂⎨∂∂⎪=⎪∂∂⎩ (7) 再令uw ax∂=∂,则(7)变为 v w a t x w v a tx ∂∂⎧=⎪⎪∂∂⎨∂∂⎪=⎪∂∂⎩ (8)令(,)T U v w =及0a A a ⎛⎫=⎪⎝⎭则(8)变为0U UA t x∂∂-=∂∂ 因此,差分方程(5)可写成1112211111122n n n n j j j j n nn n j j j j w w v v a h w w v v ah ττ++-+++---⎧--⎪=⎪⎪⎨-⎪-⎪=⎪⎩(10) 按照Fourier 方法,设12exp(),exp()n n n nj j j j v v i x w v i x αα==,2p lπα=代入(10),消去公因子common factor exp()j i x α和12exp()j i x α-,得到1121111222(sin ),2(sin)n n n n n nphv ir v v lphir v v v lππ+++-=-+=即111122()n nn n v v ph G l v v π++⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中 21()(2sin )1ic phph G c r l l ic c ππ⎛⎫== ⎪-⎝⎭为增长矩阵,其特征方程为22(2)10c λλ--+= (14) 其根按模小于1的充要条件是absolute value of root 2|2|2c -≤ (15) 即1r ≤,此为必要条件。
第三章 双曲型方程的差分方法1 一阶线性常系数双曲型方程考虑常系数线性方程0,,0u u a x R t t x∂∂+=∈>∂∂ (1.1) 其中,a 是常数。
附以初始条件0(,0)(),u x u x x R =∈ (1.2)其解沿(1.1)的特征线x at ξ-= (1.3)是常数,并可表示为00(,)()()u x t u u x at ξ==-以下讨论双曲型方程的一些常用格式。
1.1 迎风格式迎风格式的基本思想是在双曲型方程中关于空间偏导数,用在特征线方向一侧单边差商来代替。
(1.1) 的迎风格式为110n n n nj jj j u u u u ahτ+---+=,0a > (1.4)110n n n n j jj ju u u u ahτ++--+=,0a < (1.5)其中,h τ分别为时间步长和空间步长。
根据上一章讨论,当1a λ≤(/h λτ=)时,差分格式(1.4)是稳定的。
同样的方法可知,当||1a λ≤差分格式(1.5)是稳定的。
类似地,用Fourier 方法讨论差分格式:110n n n nj jj ju u u u ahτ++--+=,0a > (1.6)110n n n n j jj j u u u u ahτ+---+=,0a < (1.7)其增长因子为(,)1ikh G k a a e τλλ=+-由此有22222|(,)|[1(1cos )]sin G k a kh a kh τλλ=+-+214(1)sin 2kh a a λλ=++ 取sin02kh≠,|(,)|1G k τ>,从而破坏了von Neumann 条件,因此差分格式(1.6)是绝对不稳定的。
同理,差分格式(1.7)也是绝对不稳定的。
差分格式(1.4)与(1.7)在形式上式一致的,但因为a 的符号,一个是条件稳定的,一个是绝对不稳定。
主要原因是与微分方程的特征线有关,有以下结论:如果差分格式(所用的网格点)与微分方程的特征线走向一致,那么网格比满足一定条件下是稳定的,否则差分格式是不稳定的。