ch5-双曲型方程的差分方法
- 格式:ppt
- 大小:522.00 KB
- 文档页数:39
双曲型偏微分方程组的数值解法研究双曲型偏微分方程组是描述波动、传播、传输等现象的常见数学模型之一,在各个科学领域中都有广泛的应用。
双曲型偏微分方程组通常具有复杂的特征,其解析解往往难以求得,因此需要用数值方法求解。
本文将介绍双曲型偏微分方程组的数值解法,并分析其优缺点,以及应用举例。
双曲型偏微分方程组的数值解法可以分为两类,即有限差分方法和有限元方法。
有限差分方法是将区域分割成网格,通过在网格上构建差分格式来近似微分方程,进而求解数值解。
有限元方法则是利用变分原理,将微分方程转化为弱形式,再通过有限元空间的数值逼近来求解数值解。
下面我们将分别介绍这两类方法。
有限差分方法是求解偏微分方程最常用的数值方法之一。
这类方法的基本思想是将区域划分成网格,通过差分逼近微分算子,将微分方程转化为代数方程组,进而求解数值解。
通常有限差分方法分为显式和隐式两种。
显式差分方法是根据精确度和稳定性的需求,选择合适的差分格式,将数值解的某一时刻的计算公式,仅由该时刻之前的数值解和已知的初值组成,计算简单,但存在较为严格的稳定性限制。
隐式差分方法则以更加严格的精确性和稳定性为代价,使用迭代法求解非线性代数方程组,计算复杂,但稳定性更加优良。
有限差分是求解双曲型偏微分方程最常见的数值方法之一。
虽然有限差分法计算公式简单,但是稳定性限制较高,当空间步长、时间步长不足以满足稳定性条件时,容易产生不稳定性及不合理的解,这是有限差分法的致命弱点之一。
此时有限元法常被作为替代方法。
有限元方法是求解双曲型偏微分方程另一种常用的数值方法。
有限元法基于变分原理,把求解微分方程转化为求最小值问题。
首先,将问题的定义域划分为若干子区域,然后在每个子区域内选取适当的试函数,通过构造一个弱变分解,就可以得到一个线性代数方程组。
有限元法具有更广泛的适用范围,解高维复杂结构问题时可以体现其独特性。
虽然有限元法可以处理不规则区域,但是计算量较大,常会出现稳定性的问题。