ch5-双曲型方程的差分方法
- 格式:ppt
- 大小:522.00 KB
- 文档页数:39
双曲型偏微分方程组的数值解法研究双曲型偏微分方程组是描述波动、传播、传输等现象的常见数学模型之一,在各个科学领域中都有广泛的应用。
双曲型偏微分方程组通常具有复杂的特征,其解析解往往难以求得,因此需要用数值方法求解。
本文将介绍双曲型偏微分方程组的数值解法,并分析其优缺点,以及应用举例。
双曲型偏微分方程组的数值解法可以分为两类,即有限差分方法和有限元方法。
有限差分方法是将区域分割成网格,通过在网格上构建差分格式来近似微分方程,进而求解数值解。
有限元方法则是利用变分原理,将微分方程转化为弱形式,再通过有限元空间的数值逼近来求解数值解。
下面我们将分别介绍这两类方法。
有限差分方法是求解偏微分方程最常用的数值方法之一。
这类方法的基本思想是将区域划分成网格,通过差分逼近微分算子,将微分方程转化为代数方程组,进而求解数值解。
通常有限差分方法分为显式和隐式两种。
显式差分方法是根据精确度和稳定性的需求,选择合适的差分格式,将数值解的某一时刻的计算公式,仅由该时刻之前的数值解和已知的初值组成,计算简单,但存在较为严格的稳定性限制。
隐式差分方法则以更加严格的精确性和稳定性为代价,使用迭代法求解非线性代数方程组,计算复杂,但稳定性更加优良。
有限差分是求解双曲型偏微分方程最常见的数值方法之一。
虽然有限差分法计算公式简单,但是稳定性限制较高,当空间步长、时间步长不足以满足稳定性条件时,容易产生不稳定性及不合理的解,这是有限差分法的致命弱点之一。
此时有限元法常被作为替代方法。
有限元方法是求解双曲型偏微分方程另一种常用的数值方法。
有限元法基于变分原理,把求解微分方程转化为求最小值问题。
首先,将问题的定义域划分为若干子区域,然后在每个子区域内选取适当的试函数,通过构造一个弱变分解,就可以得到一个线性代数方程组。
有限元法具有更广泛的适用范围,解高维复杂结构问题时可以体现其独特性。
虽然有限元法可以处理不规则区域,但是计算量较大,常会出现稳定性的问题。
双曲型方程的有限差分法§0 预备知识0.1双曲型方程的常见类型: (1)、一阶线性双曲型方程()0u ua x t x∂∂+=∂∂ (2)、一阶常系数线性双曲型方程组0u u A tx∂∂+=∂∂其中u 为未知函数向量,A 为p 阶常数方阵。
(3)、二阶线性双曲型方程(波动方程)一维 22(())0u ua x x x t∂∂∂-=∂∂∂ a (x )为正值函数二维 222222()0u u ut x y∂∂∂-+=∂∂∂三维 22222222()0u u u ut x y z∂∂∂∂-++=∂∂∂∂(4)、对流扩散方程()()(())(,)u u u c x b x a x f x t t x x x∂∂∂∂+-=∂∂∂∂ 等等。
这些方程的定解条件,可以是仅有初始条件,也可以是初始条件与边界条件的混合。
如对波动方程(一维),有 (1)、初值问题2222201,0(,0)()(,0)()u u a x t Tt xu x x x u x x x tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=-∞<<∞<≤∂∂=-∞<<∞∂=-∞<<∞∂(2)、混合问题第一类:222220101,0(,0)()01(,0)()01(0,)(1,)00t u u a x t Tt x u x x x u x x x u t u t t Tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=<<<≤∂∂=≤≤=≤≤==<≤第二类:边界条件改为:(0,)0,(1,)0,0u u t t t T x∂==<≤∂第三类:边界条件改为:(1,)(0,)0,(1,)00u t u t u t t T xα∂=+=<≤∂0.2 波动方程及其特征线性双曲型方程的最简模型:波动方程初值问题22222,0,.u u a a x t x∂∂=>-∞<<∞∂∂ (1) 0(,0)()u x x ϕ= 1(,0)()t u x x ϕ=下面讨论它的特征和解析解。
抛物型和双曲型微分方程方程的差分方法双曲型微分方程的解,对求解区域内一点(慜,惭)而言,在初值区域内有一个依赖域,差分方程也是如此,对于差分方程(6),点(jΔx,nΔt)的依赖域是初值线上区间【(j-n)Δx,jΔx】。
如令Δt/Δx=r=常数,慜=jΔx,惭=nΔt,则差分方程(6)在点(慜,惭)的依赖域为【慜-a惭/r,慜】,并且步长比r固定时,依赖域与Δx,Δt无关。
差分方程(9)在(慜,惭)的依赖域是【慜-a惭/r,慜+a惭/r】,而差分方程(11)的依赖域则是【慜,慜+│a│惭/r】,R.库朗等人曾经证明,差分格式收敛的一个必要条件是差分方程的依赖域应包含微分方程的依赖域,这个条件叫作"库朗条件"。
从图3中可以看到,对于差分方程(6),这个条件是慜-a惭/r≤慜-a惭≤慜,即对于格式(9),库朗条件是,两者不同。
对于格式(11),库朗条件是慜≤慜-a惭≤慜+│a│惭/r;在a>0时,显然不能成立,所以格式(11)当a>0时不收敛,因而也是无用的。
格式(6)a>0在而库朗条件满足时,的确是收敛的。
因为的离散化误差适合由此可知:又因差分格式与微分方程的初值相同,于是可知:这说明条件满足时,格式(6)收敛。
如果a<0,格式(6)不收敛。
但当时,格式(11)收敛。
这两个格式称为"迎风格式",因为a>0时,用向后差商代替,往上风取近似值;当a<0时则用向前差商代替,也是往上风取近似值。
可见作(1)的差分格式时,要考虑波的传播方向。
⑤差分格式的稳定性用一个差分格式计算时,初值的误差必然要影响到以后各层。
通常希望这误差的影响不会越来越大,以致完全歪曲了差分方法的真解,这便是稳定性问题。
讨论时,常把问题化简,设初值有误差ε,而以后的计算并不产生误差,由于误差ε,使变成了+ε,但+ε仍满足所适合的差分格式。
定义一种衡量t=tn层格点上ε的大小的所谓范数‖ε‖,若有常数K>0使当Δt、Δx→0而0≤t=nΔt≤T时,恒有‖ε‖≤K‖ε‖,则称此差分格式是稳定的。