X射线多晶衍射方法及应用
- 格式:ppt
- 大小:1.17 MB
- 文档页数:50
多晶x射线衍射技术与应用pdf
多晶X射线衍射技术是一种用于研究晶体结构、形貌和性质的实验方法。
它通过测量晶体对X射线的衍射强度,从而得到晶体中原子或分子的排列信息。
这种技术在材料科学、化学、物理等领域具有广泛的应用。
多晶X射线衍射技术的基本原理是:当一束平行的X射线射入一个多晶样品时,由于晶体中原子或分子的排列具有一定的周期性,X 射线会在不同方向上发生衍射。
通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。
多晶X射线衍射技术的主要应用包括:
1.晶体结构分析:通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。
这对于了解材料的组成和性质具有重要意义。
2.材料表征:多晶X射线衍射技术可以用于研究材料的形貌、表面粗糙度、晶粒尺寸等性质。
这些信息对于评估材料的质量和性能至关重要。
3.相变研究:通过观察材料在不同温度、压力或气氛条件下的衍射图案变化,可以研究材料的相变过程和相图。
这对于开发新型材料和优化工艺条件具有重要意义。
4.纳米材料研究:多晶X射线衍射技术可以用于研究纳米材料的结构和性质。
这对于开发新型纳米材料和优化纳米加工技术具有重
要意义。
5.生物大分子研究:多晶X射线衍射技术可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能。
这对于理解生物过程和疾病机制具有重要意义。
多晶X射线衍射实验报告姓名:学号:院系:物理学系多晶X射线衍射实验报告姓名:学号:院系:物理学系一、实验目的1、了解衍射仪的正确使用方法。
2、掌握立方系晶体晶格常数的求法。
二、实验设备X射线衍射仪,它主要包括X射线发生器、测角台、探测记录系统三部分。
现代衍射仪还配有功能各异的计算机操作系统及数据处理系统。
三、实验原理(一)粉末衍射花样(线条)产生的原理粉末法是用单色X射线(特征辐射)照射多晶粉末试样以获得衍射线的衍射方法。
根据记录衍射线的方法的不同,粉末法又可分为粉末照相法(用照相底片记录)和粉末衍射仪法(用计数器记录)。
①用厄瓦尔德作图法解释粉末衍射花样的形成。
在多晶样品中的所有小晶体,它们的倒易点阵都是一样的,只是由于这些小晶体的取向是无规的,各个小晶体的倒易点阵的取向也是无规的。
我们取某一个倒易点hkl来考察,它的倒易矢量长度1hklhklgd。
由于取向的无规性,整个样品所有小晶体的这个倒易点是均匀分布在以晶体为中心,以hklg为半径的球面上;并且,由于样品中小晶体数目大,倒易点在球面上的密度是很高的。
其它指数的倒易点则处在其它半径的球面上,但所有球面都是同心的。
也就是说,无规取向多晶体中倒易点是分布在一系列同心球面上的,球的半径分别等于相应的倒易矢长度,这就是多晶体的倒易点阵模型。
通过倒易球心(即倒易点阵原点)画出以入射线波长倒数为半径,以入射线上一点为中心的反射球,这反射球将与倒易点球面相交,交线是一系列垂直于入射线的圆。
右图中的ABDE是其中的一个相交圆。
显然,在圆上的倒易点都是满足布拉格条件的,都会发生衍射。
一个倒易点就产生一支衍射线束,方向是从反射球心C 指向交线圆上的倒易点,因而这些衍射线束构成以入射线束为轴的圆锥面,锥的张角为224θθ⨯=(当45θ>时,圆锥的张角为24πθ-)。
这个倒易点球上不在交线圆上的倒易点都不发生衍射。
其它指数的倒易点构成其它半径的倒易点球,这些球与反射球相交成另一些圆,衍射线束构成另一些张角的圆锥面。
多晶x射线衍射的应用原理是什么1. 引言多晶X射线衍射(Poly-crystalline X-ray diffraction)是一种重要的材料表征技术,广泛应用于材料科学、化学、地质学等领域。
本文将介绍多晶X射线衍射的应用原理及其在材料表征中的重要性。
2. 多晶X射线衍射的原理多晶X射线衍射原理基于X射线与多晶体结晶格之间的相互作用。
当X射线照射到多晶体上时,由于多晶体中存在不同晶向的晶粒,X射线将被晶粒中的晶面衍射。
每个晶面都可以被视为反射X射线的光栅,产生特定的衍射图案。
3. 多晶X射线衍射仪器多晶X射线衍射实验通常采用X射线衍射仪来进行。
X射线衍射仪主要由X射线源、样品台、衍射加倍器和探测器等组成。
X射线源发射出高能X射线束,经过样品后形成衍射图案。
衍射图案经过衍射加倍器放大后被探测器捕获,最终通过数据处理得到样品的晶体结构信息。
4. 多晶X射线衍射的应用多晶X射线衍射在材料表征中有着广泛的应用。
以下列举了一些常见的应用场景:•晶体结构分析:多晶X射线衍射可以通过分析衍射图案的位置和强度,得到材料的晶体结构信息,如晶格常数、晶胞参数等。
这对于理解材料的物理、化学性质具有重要意义。
•晶体缺陷研究:通过研究衍射图案中的缺陷点、峰形和峰宽等信息,可以获得材料中的晶格缺陷(如位错、晶体界面等)信息。
这有助于理解材料的力学性能和热学性质。
•相变研究:多晶X射线衍射可以用于研究材料在温度、压力等条件下的相变行为。
通过观察衍射图案的变化,可以确定相变温度、相变的机理等。
•晶体取向分析:多晶X射线衍射可以用于测定材料中晶粒的取向信息。
通过测量不同方向上的衍射强度,可以分析材料中晶粒的取向分布、晶粒生长方向等。
•相对定量分析:多晶X射线衍射还可以用于相对定量分析材料中各个晶相的含量。
通过测量不同晶相的衍射强度,可以计算各个晶相的相对含量。
5. 结论多晶X射线衍射是一种重要的材料表征技术,可以用于获取材料的晶体结构、晶格缺陷、相变行为等信息。
可编辑修改精选全文完整版第二章X射线多晶衍射方法及应用(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:选靶,滤波,衍射花样的指数化,连续扫描法,步进扫描法,X射线物相分析,X射线物相定性分析,X射线物相定量分析。
2.X射线衍射方法分为多晶体衍射方法和单晶体衍射方法;多晶体衍射方法主要有()和();单晶体衍射方法主要有()、()和()等。
3.根据底片圆孔位置和开口所在位置不同,德拜法底片的安装方法有3种,即()、()和()。
4.德拜法测定点阵常数,系统误差主要来源于()、()、()、()等,校正的方法主要是采用()安装底片。
5.入射X射线的波长λ越长则可能产生的衍射线条越多。
这种说法()。
A.正确;B.不正确6.靶不同,同一干涉指数(HKL)晶面的衍射线出现的位置(2θ)不同。
这种说法()。
A.正确;B.不正确7.德拜法的样品是平板状的,而衍射仪法的样品是圆柱形的。
这种说法()。
A.正确;B.不正确8.德拜照相法衍射花样上,掠射角(θ)越大,则分辨率(φ)越高,故背反射衍射线条比前反射线条分辨率高。
这种说法()。
A.正确;B.不正确9.在物相定量分析方面,德拜法的结果比衍射仪法准确。
这种说法()。
A.正确;B.不正确10.多晶衍射仪法测得的衍射图上衍射峰的位置十分精确,没有误差。
这种说法()。
A.正确;B.不正确11.如果采用Mo靶(λKα=0.07093nm),那么晶面间距小于0.035nm的晶面也可能产生衍射线。
这种说法()。
A.正确;B.不正确12.在X射线物相定性分析过程中,主要是以d值为依据,而相对强度仅作为参考依据。
这种说法()。
A.正确;B.不正确13.X射线衍射法测定晶体的点阵常数是通过衍射线的位置(2θ)的测定而获得的,点阵常数测定时应尽量选用低角度衍射线。
这种说法()。
A.正确;B.不正确14.入射X射线的波长(λ)越长则可能产生的衍射线条()。
A.越少;B.越多15.靶不同,同一指数(HKL)干涉面的衍射线出现的位置2θ()。
多晶材料x射线衍射实验原理方法与应用多晶材料x射线衍射是一种非常重要的材料结构表征方法,可以用来确定晶体结构、晶格常数、晶面间距、晶胞参数等信息。
本文将介绍多晶材料x射线衍射的实验原理、方法和应用。
实验原理
多晶材料x射线衍射法是利用x射线与晶体中的原子作用而产生衍射现象的一种方法。
当x射线入射晶体后,会与晶体中的原子发生作用,形成散射波,这些散射波在晶体中的原子排列方式的影响下,会发生干涉,最终形成衍射花样。
通过分析衍射花样,可以获得晶体的结构信息。
方法
多晶材料x射线衍射的实验步骤主要包括样品制备、x射线衍射仪调试、数据采集和数据处理等环节。
样品制备:样品需要磨成粉末或者切成薄片,以便x射线可以穿透并与其发生作用。
x射线衍射仪调试:确定适当的x射线波长、角度等参数,保证x射线能够穿透样品并产生足够的衍射强度。
数据采集:将x射线衍射仪测得的衍射花样数据记录下来,通常是以衍射强度随衍射角度的变化曲线的形式呈现。
数据处理:通过计算和分析衍射曲线,可以得到晶体的结构信息。
应用
多晶材料x射线衍射法在材料科学、地质学、化学等领域得到了
广泛应用。
其中,材料科学领域是其最主要的应用领域之一。
该方法可以用于研究材料的结构、相变、缺陷、应力等问题,对于新材料的设计、合成和改进具有重要意义。
此外,多晶材料x射线衍射法也可以用于分析矿物、岩石等地质样品的结构特征,为地质学研究提供了有力的工具。