X射线多晶衍射法
- 格式:docx
- 大小:295.52 KB
- 文档页数:6
多晶x射线衍射技术与应用pdf
多晶X射线衍射技术是一种用于研究晶体结构、形貌和性质的实验方法。
它通过测量晶体对X射线的衍射强度,从而得到晶体中原子或分子的排列信息。
这种技术在材料科学、化学、物理等领域具有广泛的应用。
多晶X射线衍射技术的基本原理是:当一束平行的X射线射入一个多晶样品时,由于晶体中原子或分子的排列具有一定的周期性,X 射线会在不同方向上发生衍射。
通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。
多晶X射线衍射技术的主要应用包括:
1.晶体结构分析:通过测量衍射角度和强度,可以得到晶体的结构参数,如晶胞尺寸、原子间距离等。
这对于了解材料的组成和性质具有重要意义。
2.材料表征:多晶X射线衍射技术可以用于研究材料的形貌、表面粗糙度、晶粒尺寸等性质。
这些信息对于评估材料的质量和性能至关重要。
3.相变研究:通过观察材料在不同温度、压力或气氛条件下的衍射图案变化,可以研究材料的相变过程和相图。
这对于开发新型材料和优化工艺条件具有重要意义。
4.纳米材料研究:多晶X射线衍射技术可以用于研究纳米材料的结构和性质。
这对于开发新型纳米材料和优化纳米加工技术具有重
要意义。
5.生物大分子研究:多晶X射线衍射技术可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能。
这对于理解生物过程和疾病机制具有重要意义。
多晶材料X射线衍射-实验原理方法与应用课程设计一、前言X射线衍射是一种广泛应用于化学、物理、材料科学等领域的分析方法。
在材料科学中,X射线衍射被广泛用于表征多晶材料的结构与性质。
本课程设计旨在介绍多晶材料X射线衍射实验的原理、方法与应用。
二、实验原理X射线是一种高能量电磁辐射,在多晶材料中经过散射后形成衍射图案。
衍射图案的形状与多晶材料的晶格结构有关。
X射线衍射实验通过测量衍射图案的强度和角度,可以得到多晶材料的晶格常数、晶格类型、晶体方位关系等信息。
三、实验方法3.1 实验设备本实验所需设备如下:•X射线仪•样品架•X光学计数器•计算机3.2 样品制备在样品制备中,需要采取下列步骤:1.选取合适的多晶材料,如Cu、Fe等。
2.切割样品,并将其磨平,以保证样品表面的平整度。
3.在样品表面涂覆聚乙烯醇(PVA)等化学试剂,以保证样品表面的光滑度和保水性。
4.将样品放入样品架中,并将样品架固定在X射线仪上。
3.3 实验操作在实验操作中,需要采取下列步骤:1.开启X射线仪,并将样品架调整到适当的位置,使其与X射线束对准。
2.通过计算机控制X射线成像,得到样品的衍射图案。
3.将衍射图案进行处理,得到样品的晶格常数等信息。
4.通过对处理结果的分析,得到样品的晶体结构与性质等信息。
3.4 实验注意事项在进行实验时,需要注意以下事项:1.在样品制备过程中,要注意样品表面的平整度和光滑度。
2.在固定样品架时,要注意固定力度,以确保样品不会移动。
3.在进行X射线衍射时,要注意X光线的电功率和曝光时间,避免对样品造成伤害。
4.在处理衍射图案时,要注意算法和参数的选择,以确保处理结果的准确性。
四、实验应用多晶材料X射线衍射在材料科学中有广泛的应用,如:1.对多晶材料的晶格结构与性质进行表征;2.对材料的晶体成长、物理、化学等性质进行分析和预测;3.帮助化学研究人员优化合成反应条件,提高反应产率和产品质量;4.用于研究新材料的晶体结构和物理性质,如了解晶体缺陷和非晶结构等信息。
可编辑修改精选全文完整版第二章X射线多晶衍射方法及应用(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:选靶,滤波,衍射花样的指数化,连续扫描法,步进扫描法,X射线物相分析,X射线物相定性分析,X射线物相定量分析。
2.X射线衍射方法分为多晶体衍射方法和单晶体衍射方法;多晶体衍射方法主要有()和();单晶体衍射方法主要有()、()和()等。
3.根据底片圆孔位置和开口所在位置不同,德拜法底片的安装方法有3种,即()、()和()。
4.德拜法测定点阵常数,系统误差主要来源于()、()、()、()等,校正的方法主要是采用()安装底片。
5.入射X射线的波长λ越长则可能产生的衍射线条越多。
这种说法()。
A.正确;B.不正确6.靶不同,同一干涉指数(HKL)晶面的衍射线出现的位置(2θ)不同。
这种说法()。
A.正确;B.不正确7.德拜法的样品是平板状的,而衍射仪法的样品是圆柱形的。
这种说法()。
A.正确;B.不正确8.德拜照相法衍射花样上,掠射角(θ)越大,则分辨率(φ)越高,故背反射衍射线条比前反射线条分辨率高。
这种说法()。
A.正确;B.不正确9.在物相定量分析方面,德拜法的结果比衍射仪法准确。
这种说法()。
A.正确;B.不正确10.多晶衍射仪法测得的衍射图上衍射峰的位置十分精确,没有误差。
这种说法()。
A.正确;B.不正确11.如果采用Mo靶(λKα=0.07093nm),那么晶面间距小于0.035nm的晶面也可能产生衍射线。
这种说法()。
A.正确;B.不正确12.在X射线物相定性分析过程中,主要是以d值为依据,而相对强度仅作为参考依据。
这种说法()。
A.正确;B.不正确13.X射线衍射法测定晶体的点阵常数是通过衍射线的位置(2θ)的测定而获得的,点阵常数测定时应尽量选用低角度衍射线。
这种说法()。
A.正确;B.不正确14.入射X射线的波长(λ)越长则可能产生的衍射线条()。
A.越少;B.越多15.靶不同,同一指数(HKL)干涉面的衍射线出现的位置2θ()。
多晶材料x射线衍射实验原理方法与应用多晶材料x射线衍射是一种非常重要的材料结构表征方法,可以用来确定晶体结构、晶格常数、晶面间距、晶胞参数等信息。
本文将介绍多晶材料x射线衍射的实验原理、方法和应用。
实验原理
多晶材料x射线衍射法是利用x射线与晶体中的原子作用而产生衍射现象的一种方法。
当x射线入射晶体后,会与晶体中的原子发生作用,形成散射波,这些散射波在晶体中的原子排列方式的影响下,会发生干涉,最终形成衍射花样。
通过分析衍射花样,可以获得晶体的结构信息。
方法
多晶材料x射线衍射的实验步骤主要包括样品制备、x射线衍射仪调试、数据采集和数据处理等环节。
样品制备:样品需要磨成粉末或者切成薄片,以便x射线可以穿透并与其发生作用。
x射线衍射仪调试:确定适当的x射线波长、角度等参数,保证x射线能够穿透样品并产生足够的衍射强度。
数据采集:将x射线衍射仪测得的衍射花样数据记录下来,通常是以衍射强度随衍射角度的变化曲线的形式呈现。
数据处理:通过计算和分析衍射曲线,可以得到晶体的结构信息。
应用
多晶材料x射线衍射法在材料科学、地质学、化学等领域得到了
广泛应用。
其中,材料科学领域是其最主要的应用领域之一。
该方法可以用于研究材料的结构、相变、缺陷、应力等问题,对于新材料的设计、合成和改进具有重要意义。
此外,多晶材料x射线衍射法也可以用于分析矿物、岩石等地质样品的结构特征,为地质学研究提供了有力的工具。
实验一X射线多晶衍射一、实验目的1、了解X射线衍射仪的构造与操作原理2、了解X射线衍射仪分析的过程与步骤3、掌握使用X射线衍射仪进行物相分析的基本原理和实验方法4、掌握使用X射线衍射仪进行物相分析的衍射数据的处理方法二、实验原理1、传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。
图1-1是目前常用的热电子密封式X射线管的示意图。
阴极由钨丝绕成螺线形,工作时通电至白热状态。
由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。
为防止灯丝氧化并保证电子流稳定,管内抽成1.33x10-9~1.33x10-11的高真空。
为使电子束集中,在灯丝外设有聚焦罩。
阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。
常用的金属材料有Cr,Fe, Co, Ni, Cu, M O, W等。
当高速电子撞击阳极靶面时,便有部分动能转化为X 射线,但其中约有99%将转变为热。
为了保护阳极靶面,管子工作时需强制冷却。
为了使用流水冷却.也为了操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。
x射线管有相当厚的金属管套,使X射线只能从窗口射出。
窗口由吸收系数较低的Be片制成。
结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。
用螺线形灯丝时,焦点的形状为长方形(面积常为1m m×10mm),此称为实际焦点。
窗口位置的设计,使得射出的X射线与靶面成60角(图1-2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。
一般的照相多采用点焦点,而线焦点则多用在衍射仪上。
图1-2 在与靶面成60角的方向上接收X射线束的示意图自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。
图2-1为日本理光光学电机公司生产的D/max-B型自动化衍射仪工作原理方框图。
入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。
多晶X射线衍射分析
多晶X射线衍射分析的原理基于布拉格定律,即当X射线入射在晶体上时,由于衍射现象,会形成一系列衍射峰。
这些衍射峰可以通过布拉格方程来计算,即2dsinθ=nλ,其中d为晶胞间距,θ为入射角,n为衍射级数,λ为X射线波长。
通过测量衍射角θ和计算相应的2θ值,可以反推出晶胞间距和晶胞参数。
多晶X射线衍射实验通常使用X射线衍射仪进行。
X射线衍射仪主要由两部分组成:X射线源和X射线检测器。
X射线源通常使用钨或铜靶产生X射线,X射线检测器则用于记录X射线衍射图样。
常见的X射线检测器有电子学多道计数器和像素探测器。
X射线衍射图样可以通过旋转样品和探测器的方式进行实验测量。
多晶X射线衍射分析具有广泛的应用。
首先,它可以用于材料的相同定性分析。
不同的晶体结构会产生不同的X射线衍射图样,通过比对实验测得的衍射图样和数据库中的标准图样,可以鉴定材料的相同。
其次,多晶X射线衍射分析可以用于测量材料的晶胞参数和结晶度。
通过测量衍射图样的峰位置和强度,可以计算出晶胞参数和晶粒尺寸。
此外,多晶X射线衍射分析还可以用于材料的质量控制和表征。
例如,可以通过衍射峰的宽度和峰强度来评估材料的结晶度和晶粒尺寸分布。
综上所述,多晶X射线衍射分析是一种非常重要和常用的材料表征和结构分析方法。
它通过测量材料的X射线衍射图样,获得材料的晶体学信息,可以用于相同的鉴定、晶胞参数和结晶度的测量,以及质量控制和表征。
多晶X射线衍射分析在材料科学、地质学、化学、物理学等领域都有广泛的应用。