【作业】转化分数单位1专项练习题(一)
- 格式:doc
- 大小:79.50 KB
- 文档页数:2
2024-2025学年六年级数学上册典型例题系列
第二单元:单位“1”转化问题“拓展型”专项练习
20.读书是一种生活方式,它关乎人的心灵。
为进一步打造“书香校园”,希
动中有多少个男生报名?
2024-2025学年六年级数学上册典型例题系列第二单元:单位“1”转化问题“拓展型”专项练习
【分析】如图,先将第
一次用后余下长度看作单位“1”,剩下的15米减去1米刚好是第一次用后余
下长度的(1-1
3
),根据部分数量÷对应分率=整体数量,求出第一次用后余
下长度;再将铁丝原来长度看作单位“1”,第一次用后余下长度加上1米,刚好是铁丝原来长度的(1-1
2
),再根据部分数量÷对应分率=整体数量,即可求出铁丝原来长度。
方法二:。
判断分数应用题中单位“1”的专项练习【基本原则】一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。
.如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。
男生比女生多全班的18.把全班人数看作单位1。
.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多12。
理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”,看在谁的基础上增加或减少,那个基础量就是单位“1”例如,水结成冰后体积增加了110,把水看作单位“1”,冰融化成水后,体积减少了112。
把冰看作单位“1”二、单位“1”的应用题:单位1的量×分率=分率对应量;分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比”、“占”,“相当于”后,分率前。
已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。
【详细说明】正确找准单位“1”,是解答分数(百分数)应用题的关键。
每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
有关分数单位“1”的练习题1.下面各题怎样简便就怎样算。
①65÷83÷1615 ②65×2615÷139 ③54×31+3÷53 ④ 43÷)8321(2.解方程:① 53103=÷x ② 2)431(=-x ③ 61232=-x3.解决问题:1.修路队第一天修路80米,__________,第二天修路多少米?(按下面所给条件列算式,不必解答。
)①第二天修的是第一天的54。
列式:_____________________ ②第一天修的是第二天的54。
列式:_____________________2.果园里苹果树和梨树共360棵,苹果树棵数相当于梨树的53。
苹果树和梨树各有多少?3.一堆煤用去53,还剩下12吨,这堆煤原来有多少吨? 4.妈妈今年40岁,小红的年龄是妈妈的103,又正好是外婆的61,小红的外婆今年几岁?5.学校图书室故事书比科技书本数多41,故事书有600本,科技书有多少本?6.甲乙两桶油,甲桶油的重量是乙桶油的32,乙桶油比甲桶油多5千克,乙桶油重多少千克?7甲乙两种商品的售价都是120元,其中一件亏25%,另一件赚25%,结果是亏了还是赚了?8,水结成冰体积会增加10%,现有一块6m ³的冰,可化成多少立方米的水?一堆青草600千克,测得含水量98%,一周以后含水量为10%,这时草的重量为多少?9一人从新疆运一车葡萄到杭州,购买时测得含水量99%,单价1元共购5000千克,到达杭州后,测得含水量为97%,若他以每千克2元的价格出售,结果是亏了还是赚了?(运费由供方负责)。
第四讲分数应用题转化单位“ 1、知识梳理分数应用题研究的是数与量的对应关系,确定单位“ 1”是解答分数应用题的关键。
当问题中有多个分率,且这些分率单位“ 1”不同时,要分析不变量,将单位“ 1 ”进行统这种方法叫转化单位“ 1”、方法归纳1. 总量不变,转化为以总量为单位“1”,一种量不变,以不变的量为单位“ 1”,差量不变,以差量为单位“ 1 ”。
2. 在转化的过程中,注意分率与比之间的转化,注意“份数”思想。
三、课堂精讲例1.修路队修一条公路,第一天修了这条公路的-,第二天修了余下的-,已知这两天5 3共修路120米,这条公路全长多少米?【规律方法】总量不变,以总量(这条公路)为单位“。
1【搭配课堂训练题】 【难度分级】A看了 20页,这本书共有多少页?2. 运送一堆水泥,第一天运了这堆水泥的运,这堆水泥有多少吨?例2. (2013天河省实)某校六年级有三个班,在为 4.20雅安地震献爱心的活动中,一班22的捐款数是二、三班捐款数之和的一,二班的捐款数是一、三班捐款数之和的一,已知三35班的捐款数比一班少 180元,问三个班共捐款多少元? 【规律方法】三个班捐款总量不变,以总量为单位“1 ”。
【搭配课堂训练题】 【难度分级】B13.甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的 -211乙队筑的路是其他三个队的 -,丙队筑的路是其他三个队的一 丁队筑了多少米?1. 小方三天看完一本书,第一天看了全书的1,第二天看了余下的:第二天比第一天多1 一 2,第—天运的是第一天的,还剩84吨没有433 4 '4例3 .兄弟两人各有人民币若干元,其中弟的钱数是兄的,若弟给兄4元,则弟的钱数52是兄的3,求兄弟两人原来各有多少元?【规律方法】在变化过程中,不变的是两人总钱数,以总钱数为单位“14. 小明看一本课外读物,读了几天后,已读的页数是剩下页数的-后来他又读了20页81这时已读的页数是剩下页数的-,这本课外读物共有多少页?615. 王师傅生产一批零件,不合格产品是合格产品的,后来从合格产品中又发现了2个不19合格产品,这时算出产品的合格率是94%。
小学分数应用题中的单位1问题的专项练习(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分数应用题中的单位"1" 专项练习声明:此文档源文件来源于网络,版权归原作者所有,上传仅供学习交流参考,如作为其他用途,请与作者联系,与上传者无关,特此声明。
【基本原则】一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。
.如一桶油用去,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。
男生比女生多全班的18.把全班人数看作单位1。
.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多12。
理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”,看在谁的基础上增加或减少,那个基础量就是单位“1”例如,水结成冰后体积增加了110,把水看作单位“1”,冰融化成水后,体积减少了112。
把冰看作单位“1”二、单位“1”的应用题:单位1的量×分率=分率对应量;分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比”、“占”,“相当于”后,分率前。
已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。
【详细说明】正确找准单位“1”,是解答分数(百分数)应用题的关键。
每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
2一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
转化单位 “1”的分数应用题姓 名:例1、晶晶三天看完一本书,第一天看了全书的41,第二天看余下的52,第二天比第一天多看了15页,这本书共有多少页?(300页)例2、甲数是乙数的32,乙数是丙数的43,甲、乙、丙的和是216。
求甲、乙、丙各是多少?(甲:48,乙:72,丙:48)例3、某工厂有三个车间,第一车间的人数占三个车间总人数的25﹪,第二车间人数是第三车间的43,已知第一车间比第二车间少40人,三个车间一共有多少人?(560人)例4、有两筐梨,乙筐是甲筐的53,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的97。
甲、乙两筐梨共重多少千克?(80)例5、某校原有长跳绳的根数占长、短跳绳总数的83。
后来又买进20根长跳绳,这时长跳绳的根数占长、短跳绳总数的127。
这个学校现有长、短跳绳的总数是多少根?(60)例6、某商店原有黑白、彩色电视机共630台,其中黑白电视机占51,后来又运进一些黑白电视机。
这时黑白电视机占两种电视机总台数的30﹪,问又运进黑白电视机多少台?(90台)例7、甲数是乙数、丙数、丁数之和的21,乙数是甲数、丙数、丁数之和的31,丙数是甲数、乙数、丁数之和的41。
已知丁数是260,求甲、乙、丙、丁四数之和?(1200)练 习:1、有一批货物,第一天运了这批货物的41,第二天运的是第一天的53,还剩90吨没有运,这批货物有多少吨?(150吨)2、橘子的千克数是苹果的32,香蕉的千克数是橘子的21,香蕉和苹果共有220千克,橘子有多少千克?(110)3、某小学低年级原有少先队员是非少先队员的31,后来又有39名同学加入了少先队组织。
这样,少先队员的人数是非少先队员的87。
低年级有学生多少人?(180人)4、数学课外兴趣小组,上学期男生占95,这学期增加21名女生后,男生就只占52了,这个小组现有女生多少人?(45人)5、书店运来科技书和文艺书共240包,科技书占61。
后来又运来一批科技书,这时科技书占两种书总和的113,现在两种书各有多少包?(科75包,文200包)6、甲、乙、丙三人共同购买一艘游艇,甲支付的钱是其余两人的21,乙支付的钱是其余两人的31,丙支付的钱恰好是5000元。
2023-2024学年六年级数学上册典型例题系列第二单元:单位“1”转化问题“一般型”专项练习一、填空题。
二、解答题。
17.一个油桶中装有豆油,油和桶共重50千克,第一次倒出的豆油比豆油总重量的一半少4千克,第二次倒出余下的豆油的还多千克,这时剩下的豆油和桶共重千克,那么原来桶中有豆油多少千克?
2023-2024学年六年级数学上册典型例题系列第二单元:单位“1”转化问题“一般型”专项练习一、填空题。
二、解答题。
17.一个油桶中装有豆油,油和桶共重50千克,第一次倒出的豆油比豆油总重量的一半少4千克,第二次倒出余下的豆油的还多千克,这时剩下的豆油和桶共重千克,那么原来桶中有豆油多少千克?。
六年级数学分数应用题之单位“1”转化【例题精讲】例1、甲、乙两数的和是360,甲数的1/4等于乙数的1/5,问甲、乙两数各是多少?练习1:1、甲、乙两数相差60,其中甲的3/10与乙的1/3相等,求两数的和是多少?2、商店运来了一批苹果和梨,已知苹果比梨多2筐,其中苹果的3/7与梨的1/2的筐数相等,那么商店共运来了多少筐水果?3、学校有排球和足球共100个,排球个数的1/3比足球个数的1/10多16个,学校有排球和足球个多少个?例2、开学了,学校组织四、五、六年级向灾区捐款,四年级捐款数是另外两个年级的2/3,五年级捐款数是另外两个年级的3/5,已知六年级捐款1800元,那么三个年级共捐款多少元?练习2:4、甲、乙、丙、丁四个工程队合修一条公路,结果甲修了另外三个工程队的1/2,乙修了另外三个工程队的1/3,丙修了另外三个工程队的1/4,丁工程队修了182米,问这条公路的全长多少米?5、将一些鸡蛋分装在四个盒子里,其中1/5放入甲盒,1/3放入乙盒,放入丙盒的个数是甲乙两盒总数的3/4,丁盒放入了20个鸡蛋,这批鸡蛋一共有多少个?6、甲、乙、丙三个数的和是120,甲比另外两个数少4/5,乙比另外两个数少1/2,那么丙数是多少?例3、有红、黄两种小球共133个,如果拿出红球的1/4,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?练习3:7、有红、黄两种小球共140个,如果拿出红球的1/4,再拿出7个黄球,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?8、植树节到了,学校计划购回一批杨树和柳树120棵,如果种下杨树的1/4,再购回20棵柳树,那么杨树和柳树的棵数正好相等。
原计划购回杨树和柳树各多少棵?9、哥哥和弟弟一共有250元零花钱,如果哥哥花去自己钱数的1/8,弟弟再存入50元,那么哥哥和弟弟的钱数相等,问:原来哥哥和弟弟各有多少元?例4、把一批化肥分给三个村庄,甲村先分得这批面粉的2/5,乙村分得余下的2/5,最后丙村分得14。
判断分数应用题中单位“1”的专项练习【基本原则】一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。
如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15.男生比女生多全班的18.把全班人数看作单位1..在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1"。
例如:六(2)班男生比女生多12。
理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1",看在谁的基础上增加或减少,那个基础量就是单位“1”例如,水结成冰后体积增加了110,把水看作单位“1”,冰融化成水后,体积减少了112。
把冰看作单位“1"二、单位“1"的应用题:单位1的量×分率=分率对应量; 分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比"、“占”,“相当于”后,分率前。
已知单位“1”用乘法,未知单位“1"用除法,用具体数÷对应分率=单位“1"的量。
【详细说明】正确找准单位“1",是解答分数(百分数)应用题的关键.每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1"。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1".解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了.二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
转化分数单位1专项练习
【练习】
1、有一批货物,第一天运了这批货物的4
1
,第二天运的是第一天的53,还剩下120吨没有运,
这批货物有多少吨?
2、修路队在一条公路上施工。
第一天修了这条公路的41,第二天修了余下的3
2
,已知这两天共修路1500米,这条公路全长多少米? 3、加工一批零件,甲先加工了这批零件的52,接着乙加工了余下的9
4。
已知甲加工的个数比乙多150个,这批零件共有多少个? 4、加工一批零件,甲先加工了这批零件的52
,接着乙加工了余下的95。
已知乙加工的个数比甲少280个,这批零件共有多少个? 5、小明三天看一本书,第一天看了全书的4
1,第二天看了余下的52
,第三天看了27页,这
本书共多少页?
6、有一批货物,第一天运走了这批货物的41,第二天运的是第一天的54
,还剩下220吨没有运。
这批货物有多少吨?
7、修路队在一条公路上施工。
第一天修了这条公路的31,第二修了余下的2
1。
这两天共修路
1200米,这条公路全长多少米?
8、学校植树,第一天完成计划的83,第二天完成余下3
2
,第三天植树55棵,结果正好完成
任务,原计划植树多少棵?
9、加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的4
9 。
已知已加工个数比甲
少600个。
这批零件共有多少个? 10、运送一批水泥,第一天运了这堆水泥的41,第二天运的是第一天的3
2
,第二天比第一天少运50吨,这堆水泥有多少吨?
11、修路队修一条公路,第一天修了这条公路的5
2
,第二天修了余下的31,已知这两天共修
路360米,这条公路全长多少米?
12、加工一批零件,甲先加工了这批零件的31,接着乙加工了余下的6
5
,已知乙加工的个数
比甲多160个,这批零件共有多少个?
13、一堆黄沙,第一次用去总数的51,第二次用去了3
2
,还剩20吨,这堆黄沙原来多少吨?
14、李楠三天看完一本书,第一天看了全书的310,第二天看了全书的2
5。
这时还剩24页,这本书共有多
少页?
【例题3】
胜利厂有职工850人,男职工人数的43等于女职工人数的3
2。
该厂男、女职工各多少人? 【练习】
1、图书馆买来科技书和文艺书共6800本,文艺书本数的31等于科技书本数的5
4。
两种书各
买来多少本?
2、学校合唱团比舞蹈队多12人,合唱团人数的52等于舞蹈队人数的7
6。
合唱团和舞蹈队各
有多少人?
3、粮店里有大米和面粉共350吨,大米重量的4
1
等于面粉重量的31。
大米和面粉的重量各是
多少吨?
4、东风小学共有学生680人,男生人数的34 等于女生人数的2
3 。
东风小学男、女
生各有多少人?
5、图书馆买来科技书和文艺书510本,文艺书的本数的13 等于科技书的4
5 。
这两
种书各买了多少本?
6、某校六年级有两个班,一班人数的4
3
等于二班人数的5
4,一班比二班多3人,求两班各有多少人?。