分数应用题——转化单位一
- 格式:doc
- 大小:163.00 KB
- 文档页数:6
六年级数学巧用“单位1”(转化与统一)分数应用题解决策略(五)——转化单位,统一单位,量率对应一、填空1、有一批货物,第一天运了这批货物的 $\frac{1}{3}$,第二天运的是第一天的 $\frac{2}{5}$。
第二天运的是这批货物的 $\frac{8}{15}$。
2、一辆汽车第一天行了全程的 $\frac{3}{5}$,第二天行了余下的 $\frac{2}{5}$,第二天行了全程的。
3、一本书,上午读了 $\frac{1}{4}$,下午读了60页,这时已读页数和未读页数比是1:3.这时已读页数占这本书$\frac{1}{5}$,下午读了60页占这本书的 $\frac{1}{4}$。
4、XXX的质量是梨子的 $\frac{3}{5}$,香蕉质量是苹果的 $\frac{4}{5}$。
香蕉的质量是梨子的 $\frac{12}{25}$。
5、有两筐苹果,甲筐苹果的等于乙筐苹果数的$\frac{3}{4}$。
甲筐苹果数相当于乙筐苹果数的$\frac{4}{3}$。
二、应用1、一条绳子,第一次剪去全长的 $\frac{1}{3}$,第二次剪去余下的 $\frac{2}{3}$,第一次比第二次多剪24米。
求这条绳子的全长。
答:设这条绳子的全长为 $x$ 米,则第一次剪去的长度为$\frac{x}{3}$ 米,第二次剪去的长度为$\frac{2}{3}x-24$ 米。
根据题意得到方程:$\frac{x}{3}=\frac{2}{3}x-24+24$,解得$x=108$,所以这条绳子的全长是108米。
2、六(19)班男生比全班人数的多12人,女生人数占男生人数的 $\frac{3}{4}$,六(19)班共有学生多少人?答:设六(19)班男生人数为 $x$,则女生人数为$\frac{3}{4}x$。
根据题意得到方程:$x+\frac{3}{4}x+12=n$,其中 $n$ 为六(19)班的总人数。
解得 $n=\frac{28}{3}x+12$。
第四讲分数应用题转化单位“ 1、知识梳理分数应用题研究的是数与量的对应关系,确定单位“ 1”是解答分数应用题的关键。
当问题中有多个分率,且这些分率单位“ 1”不同时,要分析不变量,将单位“ 1 ”进行统这种方法叫转化单位“ 1”、方法归纳1. 总量不变,转化为以总量为单位“1”,一种量不变,以不变的量为单位“ 1”,差量不变,以差量为单位“ 1 ”。
2. 在转化的过程中,注意分率与比之间的转化,注意“份数”思想。
三、课堂精讲例1.修路队修一条公路,第一天修了这条公路的-,第二天修了余下的-,已知这两天5 3共修路120米,这条公路全长多少米?【规律方法】总量不变,以总量(这条公路)为单位“。
1【搭配课堂训练题】 【难度分级】A看了 20页,这本书共有多少页?2. 运送一堆水泥,第一天运了这堆水泥的运,这堆水泥有多少吨?例2. (2013天河省实)某校六年级有三个班,在为 4.20雅安地震献爱心的活动中,一班22的捐款数是二、三班捐款数之和的一,二班的捐款数是一、三班捐款数之和的一,已知三35班的捐款数比一班少 180元,问三个班共捐款多少元? 【规律方法】三个班捐款总量不变,以总量为单位“1 ”。
【搭配课堂训练题】 【难度分级】B13.甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的 -211乙队筑的路是其他三个队的 -,丙队筑的路是其他三个队的一 丁队筑了多少米?1. 小方三天看完一本书,第一天看了全书的1,第二天看了余下的:第二天比第一天多1 一 2,第—天运的是第一天的,还剩84吨没有433 4 '4例3 .兄弟两人各有人民币若干元,其中弟的钱数是兄的,若弟给兄4元,则弟的钱数52是兄的3,求兄弟两人原来各有多少元?【规律方法】在变化过程中,不变的是两人总钱数,以总钱数为单位“14. 小明看一本课外读物,读了几天后,已读的页数是剩下页数的-后来他又读了20页81这时已读的页数是剩下页数的-,这本课外读物共有多少页?615. 王师傅生产一批零件,不合格产品是合格产品的,后来从合格产品中又发现了2个不19合格产品,这时算出产品的合格率是94%。
六年级数学上册分数应用题转化单位1的五种解题方法一、“倒数法”转换单位1例题:新东门小学六年级开展捐款活动,共收到各班的捐款950元,其中六(1)班捐款金额是六(2)班的5/6,六(2)班捐款金额是六(3)班的3/4,求三个班各捐款多少元。
根据“对应的数量和÷对应的分率和=单位1的对应数量”的规律,就可求出六(2)班的捐款金额:950÷(1+5/6+4/3)=300元六(1)班的捐款金额为:300×5/6=250元六(3)班的捐款金额为:300×4/3=400元二、用分数乘法转换单位1依据分数乘法的意义转换单位1。
例题:梨园养殖场里,鸡占养殖总数的1/4,鹅是鸡的只数的1/5,鸭的只数比鹅多25%,已知鸭的只数比鸡少3750只。
鸡、鹅、鸭各养了多少只?以养殖总数为单位1,依据分数乘法的意义,鹅占养殖总数的1/4×1/5=1/20,鸭占养殖总数的1/20×(1+25%)=1/16。
鸡、鹅、鸭的分率如下图:这样,鸡与鸭就统一单位1了,都是以养殖总数为单位1的,用鸡与鸭的数量差与分率差相除,就能求出养殖总数了:3750÷(1/4-1/16)=20000只。
鸡的只数:20000×1/4=5000只鹅的只数:20000×1/20=1000只鸭的只数:20000×1/16=1250只三、用份数法转换单位1例题:乌江泥厂有甲、乙、丙、丁四个车间,甲车间人数是其他三个车间的1/4,乙车间人数是其他三个车间的4/11,丙车间人数是其他三个车间的1/2,已知丁车间有60人,该厂有职工多少人?我们可以用全厂职工总数为单位1,用份数法,分别求出甲、乙、丙三车间人数各占全厂职工总数的几分之几,然后,再求出丁车间人数占全厂职工总数的几分之几。
三个车间的分率转换如下:甲车间人数是全厂职工的1÷(1+4)=1/5,乙车间人数占全厂职工的4÷(4+11)=4/15丙车间人数占全厂职工的1÷(1+2)=1/3.现在,本题的数量关系已简化成下图:看图可知,60人的对应分率为1-1/5-4/15-1/3。
转化单位“1”(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的ba ;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =adbc 。
例题1、乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815 练习11、乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几?2、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3、一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?例题2、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,第二周修了多少米?解一:8000×14 ×45=1600(米)先求量解二:8000×(14 ×45 )=1600(米)先求对应分率 答:第二周修了1600米。
练习2用两种方法解答下面各题: 1、一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2、 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78 ,长颈鹿可活多少年?3、仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?例题3、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页) 答:这本书有300页。
练习31、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。
转化单位1分数应用题(超经典)————————————————————————————————作者:————————————————————————————————日期:23 “单位1”相关问题复习专题(一)例题1、乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815练习11、乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几?2、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3、一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?例题2、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米? 解一:8000×14 ×45=1600(米)先求量解二:8000×(14 ×45 )=1600(米)先求对应分率 答:第二周修了1600米。
练习2用两种方法解答下面各题: 1、一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2、大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78,长颈鹿可活多少年?3、仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?例题3、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页) 答:这本书有300页。
练习31、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。
这批货物有多少吨?2、修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23 ,已知这两天共修路1200米,这条公路全长多少米?3、加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的49 。
转化单位一的分数应用题
当涉及到将单位转换应用于分数时,这是一个常见的问题类型。
以下是一个转化单位的分数应用题的例子:
问题:小明每分钟可以跑300米。
如果他跑了2/3小时,他一共跑了多少米?
解答:
首先,我们需要将时间从小时转换为分钟,以便与每分钟跑的距离单位匹配。
1小时= 60分钟
由于小明跑了2/3小时,我们可以计算出他跑了多少分钟:
2/3 * 60 = 40分钟
接下来,我们可以计算小明在40分钟内跑了多少米:
每分钟跑300米,所以在40分钟内他跑了:
40 * 300 = 12000米
所以,小明在2/3小时内一共跑了12000米。
这个问题的关键是将不同单位之间的转换应用于分数。
通过正确地转化时间单位并使用分数运算,我们可以解决这类问题。
【奥数讲座】分数应用题转化单位1转化单位1(一)【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?【解答】(8/15)乙数是甲数的2/3,把甲数看作单位1,乙数就是2/3;丙数是乙数的4/5,也就是说丙数是2/3的4/5,“求一个数的几分之几是多少”用乘法,即2/3×4/5=8/15,丙数是8/15,甲数是1,所以丙数是甲数的8/15。
【练习1】乙数是甲数的3/4,丙数是乙数的6/7,丙数是甲数的几分之几?【解答】(9/14)乙数是甲数的3/4,把甲数看作单位1,乙数就是3/4;丙数是乙数的6/7,也就是说丙数是3/4的6/7,“求一个数的几分之几是多少”用乘法,即3/4×6/7=9/14,丙数是9/14,甲数是1,所以丙数是甲数的9/14。
【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?【解答】(1600米)思考一:第一周修了8000×1/4=2000米,第二周修了2000×4/5=1600米。
思考二:第二周占全长的1/4×4/5=1/5,第二周修了8000×1/5=1600米。
【练习2】一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的2/3,第二次用去黄沙多少吨?【解答】(4吨)思考一:第一次用去30×1/5=6吨,第二次用去6×2/3=4吨。
思考二:第二次用去的占总数的1/5×2/3=2/15,第二次用去30×2/15=4吨。
【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?【解答】(300页)第一天看了后剩下1-1/4=3/4,第二天看的是余下的2/5,第二天看的占总页数的3/4×2/5=3/10,第二天比第一天多的占总页数的3/10-1/4=1/20,即总页数的1/20是15页,所以总页数是15÷1/20=300页。