分数应用题——转化单位一
- 格式:doc
- 大小:163.00 KB
- 文档页数:6
六年级数学巧用“单位1”(转化与统一)分数应用题解决策略(五)——转化单位,统一单位,量率对应一、填空1、有一批货物,第一天运了这批货物的 $\frac{1}{3}$,第二天运的是第一天的 $\frac{2}{5}$。
第二天运的是这批货物的 $\frac{8}{15}$。
2、一辆汽车第一天行了全程的 $\frac{3}{5}$,第二天行了余下的 $\frac{2}{5}$,第二天行了全程的。
3、一本书,上午读了 $\frac{1}{4}$,下午读了60页,这时已读页数和未读页数比是1:3.这时已读页数占这本书$\frac{1}{5}$,下午读了60页占这本书的 $\frac{1}{4}$。
4、XXX的质量是梨子的 $\frac{3}{5}$,香蕉质量是苹果的 $\frac{4}{5}$。
香蕉的质量是梨子的 $\frac{12}{25}$。
5、有两筐苹果,甲筐苹果的等于乙筐苹果数的$\frac{3}{4}$。
甲筐苹果数相当于乙筐苹果数的$\frac{4}{3}$。
二、应用1、一条绳子,第一次剪去全长的 $\frac{1}{3}$,第二次剪去余下的 $\frac{2}{3}$,第一次比第二次多剪24米。
求这条绳子的全长。
答:设这条绳子的全长为 $x$ 米,则第一次剪去的长度为$\frac{x}{3}$ 米,第二次剪去的长度为$\frac{2}{3}x-24$ 米。
根据题意得到方程:$\frac{x}{3}=\frac{2}{3}x-24+24$,解得$x=108$,所以这条绳子的全长是108米。
2、六(19)班男生比全班人数的多12人,女生人数占男生人数的 $\frac{3}{4}$,六(19)班共有学生多少人?答:设六(19)班男生人数为 $x$,则女生人数为$\frac{3}{4}x$。
根据题意得到方程:$x+\frac{3}{4}x+12=n$,其中 $n$ 为六(19)班的总人数。
解得 $n=\frac{28}{3}x+12$。
第四讲分数应用题转化单位“ 1、知识梳理分数应用题研究的是数与量的对应关系,确定单位“ 1”是解答分数应用题的关键。
当问题中有多个分率,且这些分率单位“ 1”不同时,要分析不变量,将单位“ 1 ”进行统这种方法叫转化单位“ 1”、方法归纳1. 总量不变,转化为以总量为单位“1”,一种量不变,以不变的量为单位“ 1”,差量不变,以差量为单位“ 1 ”。
2. 在转化的过程中,注意分率与比之间的转化,注意“份数”思想。
三、课堂精讲例1.修路队修一条公路,第一天修了这条公路的-,第二天修了余下的-,已知这两天5 3共修路120米,这条公路全长多少米?【规律方法】总量不变,以总量(这条公路)为单位“。
1【搭配课堂训练题】 【难度分级】A看了 20页,这本书共有多少页?2. 运送一堆水泥,第一天运了这堆水泥的运,这堆水泥有多少吨?例2. (2013天河省实)某校六年级有三个班,在为 4.20雅安地震献爱心的活动中,一班22的捐款数是二、三班捐款数之和的一,二班的捐款数是一、三班捐款数之和的一,已知三35班的捐款数比一班少 180元,问三个班共捐款多少元? 【规律方法】三个班捐款总量不变,以总量为单位“1 ”。
【搭配课堂训练题】 【难度分级】B13.甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的 -211乙队筑的路是其他三个队的 -,丙队筑的路是其他三个队的一 丁队筑了多少米?1. 小方三天看完一本书,第一天看了全书的1,第二天看了余下的:第二天比第一天多1 一 2,第—天运的是第一天的,还剩84吨没有433 4 '4例3 .兄弟两人各有人民币若干元,其中弟的钱数是兄的,若弟给兄4元,则弟的钱数52是兄的3,求兄弟两人原来各有多少元?【规律方法】在变化过程中,不变的是两人总钱数,以总钱数为单位“14. 小明看一本课外读物,读了几天后,已读的页数是剩下页数的-后来他又读了20页81这时已读的页数是剩下页数的-,这本课外读物共有多少页?615. 王师傅生产一批零件,不合格产品是合格产品的,后来从合格产品中又发现了2个不19合格产品,这时算出产品的合格率是94%。
六年级数学上册分数应用题转化单位1的五种解题方法一、“倒数法”转换单位1例题:新东门小学六年级开展捐款活动,共收到各班的捐款950元,其中六(1)班捐款金额是六(2)班的5/6,六(2)班捐款金额是六(3)班的3/4,求三个班各捐款多少元。
根据“对应的数量和÷对应的分率和=单位1的对应数量”的规律,就可求出六(2)班的捐款金额:950÷(1+5/6+4/3)=300元六(1)班的捐款金额为:300×5/6=250元六(3)班的捐款金额为:300×4/3=400元二、用分数乘法转换单位1依据分数乘法的意义转换单位1。
例题:梨园养殖场里,鸡占养殖总数的1/4,鹅是鸡的只数的1/5,鸭的只数比鹅多25%,已知鸭的只数比鸡少3750只。
鸡、鹅、鸭各养了多少只?以养殖总数为单位1,依据分数乘法的意义,鹅占养殖总数的1/4×1/5=1/20,鸭占养殖总数的1/20×(1+25%)=1/16。
鸡、鹅、鸭的分率如下图:这样,鸡与鸭就统一单位1了,都是以养殖总数为单位1的,用鸡与鸭的数量差与分率差相除,就能求出养殖总数了:3750÷(1/4-1/16)=20000只。
鸡的只数:20000×1/4=5000只鹅的只数:20000×1/20=1000只鸭的只数:20000×1/16=1250只三、用份数法转换单位1例题:乌江泥厂有甲、乙、丙、丁四个车间,甲车间人数是其他三个车间的1/4,乙车间人数是其他三个车间的4/11,丙车间人数是其他三个车间的1/2,已知丁车间有60人,该厂有职工多少人?我们可以用全厂职工总数为单位1,用份数法,分别求出甲、乙、丙三车间人数各占全厂职工总数的几分之几,然后,再求出丁车间人数占全厂职工总数的几分之几。
三个车间的分率转换如下:甲车间人数是全厂职工的1÷(1+4)=1/5,乙车间人数占全厂职工的4÷(4+11)=4/15丙车间人数占全厂职工的1÷(1+2)=1/3.现在,本题的数量关系已简化成下图:看图可知,60人的对应分率为1-1/5-4/15-1/3。
转化单位“1”(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的ba ;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =adbc 。
例题1、乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815 练习11、乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几?2、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3、一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?例题2、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,第二周修了多少米?解一:8000×14 ×45=1600(米)先求量解二:8000×(14 ×45 )=1600(米)先求对应分率 答:第二周修了1600米。
练习2用两种方法解答下面各题: 1、一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2、 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78 ,长颈鹿可活多少年?3、仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?例题3、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页) 答:这本书有300页。
练习31、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。
转化单位1分数应用题(超经典)————————————————————————————————作者:————————————————————————————————日期:23 “单位1”相关问题复习专题(一)例题1、乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815练习11、乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几?2、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3、一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?例题2、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米? 解一:8000×14 ×45=1600(米)先求量解二:8000×(14 ×45 )=1600(米)先求对应分率 答:第二周修了1600米。
练习2用两种方法解答下面各题: 1、一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2、大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78,长颈鹿可活多少年?3、仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?例题3、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页) 答:这本书有300页。
练习31、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。
这批货物有多少吨?2、修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23 ,已知这两天共修路1200米,这条公路全长多少米?3、加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的49 。
转化单位一的分数应用题
当涉及到将单位转换应用于分数时,这是一个常见的问题类型。
以下是一个转化单位的分数应用题的例子:
问题:小明每分钟可以跑300米。
如果他跑了2/3小时,他一共跑了多少米?
解答:
首先,我们需要将时间从小时转换为分钟,以便与每分钟跑的距离单位匹配。
1小时= 60分钟
由于小明跑了2/3小时,我们可以计算出他跑了多少分钟:
2/3 * 60 = 40分钟
接下来,我们可以计算小明在40分钟内跑了多少米:
每分钟跑300米,所以在40分钟内他跑了:
40 * 300 = 12000米
所以,小明在2/3小时内一共跑了12000米。
这个问题的关键是将不同单位之间的转换应用于分数。
通过正确地转化时间单位并使用分数运算,我们可以解决这类问题。
【奥数讲座】分数应用题转化单位1转化单位1(一)【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?【解答】(8/15)乙数是甲数的2/3,把甲数看作单位1,乙数就是2/3;丙数是乙数的4/5,也就是说丙数是2/3的4/5,“求一个数的几分之几是多少”用乘法,即2/3×4/5=8/15,丙数是8/15,甲数是1,所以丙数是甲数的8/15。
【练习1】乙数是甲数的3/4,丙数是乙数的6/7,丙数是甲数的几分之几?【解答】(9/14)乙数是甲数的3/4,把甲数看作单位1,乙数就是3/4;丙数是乙数的6/7,也就是说丙数是3/4的6/7,“求一个数的几分之几是多少”用乘法,即3/4×6/7=9/14,丙数是9/14,甲数是1,所以丙数是甲数的9/14。
【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?【解答】(1600米)思考一:第一周修了8000×1/4=2000米,第二周修了2000×4/5=1600米。
思考二:第二周占全长的1/4×4/5=1/5,第二周修了8000×1/5=1600米。
【练习2】一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的2/3,第二次用去黄沙多少吨?【解答】(4吨)思考一:第一次用去30×1/5=6吨,第二次用去6×2/3=4吨。
思考二:第二次用去的占总数的1/5×2/3=2/15,第二次用去30×2/15=4吨。
【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?【解答】(300页)第一天看了后剩下1-1/4=3/4,第二天看的是余下的2/5,第二天看的占总页数的3/4×2/5=3/10,第二天比第一天多的占总页数的3/10-1/4=1/20,即总页数的1/20是15页,所以总页数是15÷1/20=300页。
分数应用题转化单位一练习题分数应用题是数学中的一种重要题型,其中转化单位一的方法是解决这类问题的关键之一。
下面我们通过一些练习题来加深对转化单位一的理解和掌握。
例1:某班有男生20人,女生30人,求女生的数量是男生数量的几倍?这道题中,我们需要将女生数量转化为单位一,然后再计算与男生数量的比值。
由于女生数量为30,比男生数量20大,因此我们需要在女生数量上加上一个分数,使得这个分数与男生数量的比值为1。
根据题意可得:女生数量 = 30男生数量 = 20因此,女生数量是男生数量的1.5倍,即30/20=1.5。
例2:某公司去年销售额为100万元,今年销售额为120万元,求今年销售额是去年销售额的几倍?这道题中,我们需要将去年销售额转化为单位一,然后再计算与今年销售额的比值。
由于今年销售额为120,比去年销售额100大,因此我们需要在去年销售额上加上一个分数,使得这个分数与今年销售额的比值为1。
根据题意可得:去年销售额 = 100万元今年销售额 = 120万元因此,今年销售额是去年销售额的1.2倍,即120/100=1.2。
通过以上两道练习题,我们可以发现转化单位一的方法在分数应用题中的重要性。
在实际解题过程中,我们需要先判断哪个量是单位一,然后根据题目中的条件,将其他量转化为单位一,最后计算比值或者比例关系。
我们还需要注意一些关键词的含义,例如“几倍”、“增加几倍”等,这些关键词往往决定了我们在计算过程中需要使用乘法还是除法。
分数混合运算应用题练习题一分数混合运算应用题练习题一分数混合运算是一种常见的数学问题,它涉及到分数的加减乘除以及各种应用场景。
下面我们通过一道例题来讲解分数混合运算的解题方法和技巧。
例题:某班共有40名学生,其中男生占1/2,女生占1/2。
在一次数学考试中,男生平均分为70分,女生平均分为80分。
请问这个班级的平均分是多少?分析:这个问题涉及到分数的加减乘除,我们可以先计算男女生各自的分数,再根据男女生人数计算班级总分数,最后求得班级平均分。
奥数训练——分数应用题转化单位“1”(练习七) 练习七:1、某厂男职工比全厂职工总人数的35 多60人,女职工人数是男职工人数的12 ,这个工厂有职工多少人?2、一筐苹果卖掉15 后,又卖掉6千克,这时卖出的苹果重量正好是剩下的12 。
这筐苹果原来有多少千克?3、甲、乙两车共运一批煤,运完时,甲车运了总数的715 多12吨,比乙车多运12 ,甲车运了多少吨?4、纺织厂女职工人数比全厂人数的75%还多100人,男职工人数是女职工的15 。
这个纺织厂有男职工多少人?奥数训练——分数应用题转化单位“1”(练习八)1、有两筐梨,乙筐是甲筐的35 ,从甲筐取出5千克放入乙筐后,乙筐的梨是甲筐的。
甲、乙两筐梨各重多少千克?2、某小学低年79 级原有少先队员是非少先队员的13 ,后来又有39名同学加入了少先队组织。
这样,少先队员的人数是非少先队员的78 。
低年级有学生多少人?3、王师13 傅生产一批零件,不合格产品是合格产品的119 ,后来从合格产品中又发现2个不合格,这时的产品合格率是94%。
合格产品有多少个?4、某校六年级上学期男生占总人数的54%,本学期初转进了3名女生,转走了3名男生,这时女生占总人数的48%。
现在有男生多少人?奥数训练——分数应用题转化单位“1”(练习九)1、某校原有长跳绳的根数占长、短跳绳总数的38 ,后来又买进20根长绳,这时长绳占跳绳总数的712 。
这个学校现有长、短跳绳的总数是多少根?2、阅览室看书的同学中,女同学占35 ,从阅览室走出5位女同学后,看书的同学中,女同学占47 ,原来阅览室里一共有多少名同学在看书?3、一堆什锦糖,其中奶糖占45%,再次放入16千克其它糖后,奶糖只占25%。
这堆糖中有奶糖多少千克?4、数学课外兴趣小组,上学期男生占59 ,这学期增加21名女生后,男生就只占25 了。
这个小组现有女生多少人?奥数训练——分数应用题转化单位“1”(练习十)1、有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一局部后,发现短的一段布剩下的长度是长的一段布剩下的长度的35 。
分数应用题之转化单位“1”(二)一、知识要点我们必须重视转化训练。
通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。
二、精讲精练【例题1】甲数是乙数的23 ,乙数是丙数的34,甲、乙、丙的和是216,甲、乙、丙各是多少? 解法一:把丙数看所单位“1”那么甲数就是丙数的34 ×23 =12, 丙:216÷(1+34 +34 ×23)=96 乙:96×34=72 甲:72×23=48 解法二:可将“乙数是丙数的34 ”转化成“丙数是乙数的43”,把乙数看作单位“1”。
乙:216÷(23 +1+43)=72 甲:72×23=48 丙:72÷34=96 解法三:将条件“甲数是乙数的23 ”转化为“乙数是甲数的32 ”,再将条件“乙数是丙数的34”转化为“丙数是乙数的43”,以甲数为单位“1”。
甲:216÷(1+32 +32 ×43)=48 乙:48×32=72 丙:72×43=96 答:甲数是48,乙数是72,丙数是96。
练习1下面各题怎样计算简便就怎样计算:1、甲数是乙数的56 ,乙数是丙数的34,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?2、橘子的千克数是苹果的23 ,香蕉的千克数是橘子的12,香蕉和苹果共有220千克,橘子有多少千克?3、某中学的初中部三个年级中,初一的学生数是初二学生数的910 ,初二的学生数是初三学生数的114倍,这个学校里初三的学生数占初中部学生数的几分之几?【例题2】:红、黄、蓝气球共有62只,其中红气球的35 等于黄气球的23,蓝气球有24只,红气球和黄气球各有多少只?解法一:将条件“红气球的35 等于黄气球的23 ”转化为“黄气球的只数是红气球的(35 ÷23 =)910”。
先求红气球的只数,再求出黄气球的只数。
六年级数学分数应用题之单位“1”转化【例题精讲】例1、甲、乙两数的和是360,甲数的1/4等于乙数的1/5,问甲、乙两数各是多少?练习1:1、甲、乙两数相差60,其中甲的3/10与乙的1/3相等,求两数的和是多少?2、商店运来了一批苹果和梨,已知苹果比梨多2筐,其中苹果的3/7与梨的1/2的筐数相等,那么商店共运来了多少筐水果?3、学校有排球和足球共100个,排球个数的1/3比足球个数的1/10多16个,学校有排球和足球个多少个?例2、开学了,学校组织四、五、六年级向灾区捐款,四年级捐款数是另外两个年级的2/3,五年级捐款数是另外两个年级的3/5,已知六年级捐款1800元,那么三个年级共捐款多少元?练习2:4、甲、乙、丙、丁四个工程队合修一条公路,结果甲修了另外三个工程队的1/2,乙修了另外三个工程队的1/3,丙修了另外三个工程队的1/4,丁工程队修了182米,问这条公路的全长多少米?5、将一些鸡蛋分装在四个盒子里,其中1/5放入甲盒,1/3放入乙盒,放入丙盒的个数是甲乙两盒总数的3/4,丁盒放入了20个鸡蛋,这批鸡蛋一共有多少个?6、甲、乙、丙三个数的和是120,甲比另外两个数少4/5,乙比另外两个数少1/2,那么丙数是多少?例3、有红、黄两种小球共133个,如果拿出红球的1/4,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?练习3:7、有红、黄两种小球共140个,如果拿出红球的1/4,再拿出7个黄球,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?8、植树节到了,学校计划购回一批杨树和柳树120棵,如果种下杨树的1/4,再购回20棵柳树,那么杨树和柳树的棵数正好相等。
原计划购回杨树和柳树各多少棵?9、哥哥和弟弟一共有250元零花钱,如果哥哥花去自己钱数的1/8,弟弟再存入50元,那么哥哥和弟弟的钱数相等,问:原来哥哥和弟弟各有多少元?例4、把一批化肥分给三个村庄,甲村先分得这批面粉的2/5,乙村分得余下的2/5,最后丙村分得14。
巧妙转化单位“1”解答分数应用题一.分数“的”字前面就是单位“1”例如:一堆煤中的5吨,正好占这堆煤的1/5.这堆煤共有多少吨?1/5“的"字前面这堆煤可以看作是单位“1”。
二。
分数前没有“的"字,要分析题意例如:一台电视机,降价1/5后是2000元,这台电视机的原价是多少元?经仔细分辨后得知:降价1/5是指降原价的1/5,则1/5“的"字前的原价为单位“1”。
三.“比”字后面就是单位“1”例如:小萍身高147厘米,小青比小萍矮1/7。
小青身高多少厘米?则“比”字后面是小萍的身高,所以把小萍设为单位“1”。
可是只是找对了单位“1”还不够,因为它变化太快了.有时把需要把整体设为单位“1";有时是把部分设为单位“1”;也有时把几个数量关系中的一个量设为单位“1”。
单位“1”不同得到的解法也不同.所以,巧妙转化单位“1”就很显得很重要了。
可是说起来容易做起来难呀!有一批货物,第一天运了这批货物的1/4,第二天运的是第一天的3/5,还剩90吨没有运,这批货物共有多少吨?思路分析:由题意可知,把“第二天运的是第一天的3/5"转化“第二天运的是一批货物的1/4×3/5”,那么两天共运走了1/4+1/4×3/5,余下了1-(1/4 +1/4×3/5),又知道余下了90吨。
可以列式为90÷[1-(1/4+1/4×3/5)]=150(吨)通过转化练习,我学会了理解数量关系的变化。
甲数是乙数的5/6,乙数是丙数的3/4,甲、乙、丙三数的和是152,求三个数各是多少?思路分析:可以将“乙数是丙数的3/4”转化成“丙数是乙数的4/3”,把乙数看做单位“1”,那么,甲、乙、丙三个数共占5/6+1+4/3=19/ 6。
已知三个数的和是152.那么乙数=152÷(5/6+1+4/3)=48甲数=48×5/6=40丙数=48÷3/4=64分数应用题的种类多种多样,但万变不离其宗。
分数应用题(一)例题精讲:例:1:(1)乙队原有的人数是甲队的73,若乙队增加30人,则乙队人数是甲队人数的32,原来两队各有多少人?(2)乙队原有的人数是甲队的73,若甲队减少30人,则乙队人数是甲队的32,原来两队各多少人?例2:兄弟4人合买一台彩电,老大出的钱是其他三人的21,老二出的钱是另外三人出钱的31,老三出的钱是另外三人出钱总数的41,老四比老三多出40元。
问这台彩电多少钱?例3:仓库里有甲乙丙三对货物,一共有5050件,甲堆货物的61等于乙堆货物的41,丙堆货物比甲堆少127,三堆货物各有多少件?例4:某小学五年级和六年级共有324人,五年级中男生占95,六年级中男生占94,两个年级女生人数一样多,两个年级男生共有多少人?例5:两个同样的瓶子里装有数量不等的水,若将甲瓶里的52倒入乙瓶,则乙瓶正好装满;若将乙瓶里水的51倒入甲瓶,则甲瓶也正好装满,已知两个瓶共装水420毫升,求瓶子的容积。
例6:甲乙两班人数相等,各有一些同学参加数学兴趣小组,甲班参加的人数是乙班没参加人数的31,乙班参加的人数是甲班没参加人数的41,求甲班没参加的是乙班没参加的几分之几?例7:长方形周长130厘米,长增加72,宽减少31后,得到的长方形和原来的长方形的周长相等,原来长宽各是多少厘米?练习提高:1、两堆水泥,甲堆比乙堆多41,乙堆运来3.6吨后,甲堆是乙堆的87,两堆原有多少吨?2、有红、黄、紫三种颜色的花,其中黄花的朵数是紫花和红花和的21,紫花的朵数是黄花和红花和的31,如果黄花比紫花多24朵,那么红花比紫花多多少朵?3、笑笑和聪聪分别有一些玻璃球,如果笑笑给聪聪24个,则笑笑的玻璃球比聪聪少73;如果聪聪给笑笑24个,则聪聪的玻璃球比笑笑少85。
笑笑和聪聪原来共有玻璃球多少个?4、某班一次集合,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么这个班共有多少人?5、甲乙两桶共有油68千克,甲桶取走它的31,乙桶取走它的41,两桶余下的重量相等,甲乙两桶原来各有多少千克?6、一瓶水,倒入甲瓶还差31灌满,倒入乙瓶则多出了乙瓶的31,已知甲瓶的容量比乙瓶多21升,两瓶容量各多少升?7、兄弟二人共带200元钱去书店买参考资料,回家后两人剩下的钱数正好相等。
练习七:1、某厂男职工比全厂职工总人数的35 多60人,女职工人数是男职工人数的12 ,这个工厂有职工多少人?2、一筐苹果卖掉15 后,又卖掉6千克,这时卖出的苹果重量正好是剩下的12 。
这筐苹果原来有多少千克?3、甲、乙两车共运一批煤,运完时,甲车运了总数的715 多12吨,比乙车多运12 ,甲车运了多少吨?4、纺织厂女职工人数比全厂人数的3/4还多100人,男职工人数是女职工的15 。
这个纺织厂有男职工多少人?1、有两筐梨,乙筐是甲筐的35 ,从甲筐取出5千克放入乙筐后,乙筐的梨是甲筐的。
甲、乙两筐梨各重多少千克?2、某小学低年79 级原有少先队员是非少先队员的13 ,后来又有39名同学加入了少先队组织。
这样,少先队员的人数是非少先队员的78 。
低年级有学生多少人?3、王师13 傅生产一批零件,不合格产品是合格产品的119 ,后来从合格产品中又发现2个不合格,这时的产品合格率是94%。
合格产品有多少个?4、某校六年级上学期男生占总人数的54%,本学期初转进了3名女生,转走了3名男生,这时女生占总人数的48%。
现在有男生多少人?1、某校原有长跳绳的根数占长、短跳绳总数的38 ,后来又买进20根长绳,这时长绳占跳绳总数的712 。
这个学校现有长、短跳绳的总数是多少根?2、阅览室看书的同学中,女同学占35 ,从阅览室走出5位女同学后,看书的同学中,女同学占47 ,原来阅览室里一共有多少名同学在看书?3、一堆什锦糖,其中奶糖占45%,再次放入16千克其它糖后,奶糖只占25%。
这堆糖中有奶糖多少千克?4、数学课外兴趣小组,上学期男生占59 ,这学期增加21名女生后,男生就只占25 了。
这个小组现有女生多少人?1、有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布剩下的长度的35 。
每段布用去多少米?2、有两根塑料绳,一根长80米,另一根长40米,如果从两根绳上各剪去同样长的一段后,短绳所剩下的长度是长绳剩下的27 ,两根绳各剪去多少米?3、今年父亲40岁,儿子今年12岁,当儿子的年龄是父亲年龄的512 时。