分数应用题之转化单位1
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
六年级上册数学教案3.3 转化单位“1”解决较复杂的分数应用题|西师大版我今天要为大家分享的教学内容是我所教授的六年级上册数学教案中的一部分,具体是第三章第三节“转化单位‘1’解决较复杂的分数应用题”。
这一节的主要内容是让学生掌握如何将单位“1”转化为具体的数值,并利用这个方法解决一些较复杂的分数应用题。
我的教学目标是希望学生们能够通过这一节的学习,掌握单位“1”的转化方法,并能够运用这个方法解决实际的问题。
同时,我也希望他们能够提高他们的数学思维能力和解决问题的能力。
在教学过程中,我会遇到一些难点和重点。
重点是让学生掌握单位“1”的转化方法,难点则是如何让学生们理解并运用这个方法解决实际的问题。
为了帮助学生们更好地理解和掌握这个方法,我准备了一些教具和学具,包括一些具体的分数应用题和一些辅助的图表。
在教学过程中,我会通过一些具体的实例引入这个概念,然后通过讲解和练习,让学生们逐渐理解和掌握这个方法。
在讲解的过程中,我会特别强调如何将单位“1”转化为具体的数值,并如何利用这个数值来解决实际的问题。
在板书设计上,我会用清晰的图表和简洁的文字来展示这个方法的步骤和关键点,以便学生们能够更好地理解和记忆。
在作业设计上,我会布置一些具体的分数应用题,让学生们运用他们所学的知识来解决。
我会提供详细的答案和解题步骤,以便学生们能够更好地理解和掌握。
我会进行课后反思和拓展延伸。
我会根据学生们在课堂上的表现和作业的完成情况,对我的教学方法和内容进行调整和改进。
同时,我也会寻找一些相关的资料和题目,为学生们的学习提供更多的拓展和延伸。
重点和难点解析:在我在六年级上册数学教案中分享的教学内容中,我认为有几个重点和难点是值得我们特别关注的。
我们需要重点关注的是单位“1”的转化方法。
这个方法是解决较复杂的分数应用题的关键,因此,学生们必须熟练掌握。
在教学过程中,我会通过具体的实例和讲解,让学生们理解并掌握这个方法。
我会强调,将单位“1”转化为具体的数值是解决分数应用题的第一步,而这个数值的计算方法是关键。
分数应用题专题----转化单位“1”例一:将一个数的几分之几的几分之几转化为这个数的几分之几。
1、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?2、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?例二:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例:四年级人数比五年级人数少14。
五年级人数比四年级人数多几分之几?例三:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几?例:甲数的23 等于乙数的34。
甲数是乙数的几分之几?乙数是甲数的几分之几?1、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35,还剩90吨没有运。
这批货物有多少吨?2、修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?3、某班共有学生51人,男生人数的34 等于女生人数的23。
这个班男、女生各有多少人?4、图书馆买来科技书和文艺书510本,文艺书的本数的13 等于科技书的45。
这两种书各买了多少本?5、某小学五年级三个班植树,一班植树的棵树占三个班总棵数的15,二班与三班植树棵数的比是3∶5,二班比三班少植树40棵。
这三个班各植树多少棵?6、图书角有故事书、科技书、文艺书这三种书。
故事书的本数占总数的25 ,科技书的本数是文艺书的34,文艺书比故事书少20本。
图书角共有图书多少本?7、某班共有学生51人,男生人数的34 等于女生人数的23。
这个班男、女生各有多少人?8、图书馆买来科技书和文艺书510本,文艺书的本数的13 等于科技书的45。
这两种书各买了多少本?9、男生比女生少2/7,女生比男生多百分之几?10、甲数是乙数的23 ,乙数是丙数的34,甲、乙、丙的和是216。
甲、乙、丙各是多少?11、橘子的千克数是苹果的23 ,香蕉的千克数是橘子的23,香蕉和苹果共有260千克。
六年级数学分数应用题中非常重要的就是单位“1”的确定,一般情况下,我们会根据关键词,如“是、比、占、相当于”和“分率”之间的量,来确定单位“1”。
但是,这只是对于一般简单分数应用题,如果对于较复杂的分数应用题,这样确定单位“1”就没有这么简单。
同样,学生进入六年级后,随着学习内容的增加,获得的解题经验也随之增长。
如何促进学生多角度解决问题,如何深入思考解决问题,如何面对一个问题做到“一题多解”,下面我结合具体例题讲解如何对于分数应用题“一题多解”。
例1:某班共有学生51人,男生人数的34等于女生的23。
这个班男女生各有多少人?方法1:根据“男生人数的34等于女生的23”这一等量关系式,可以用方程来解题:对于学生来说,把哪个未知量转化为已知量(写解设),如何利用已知条件建立等量关系是学生不愿意用方程来解题的关键。
解:设男生人数是x人,女生有(51-x)人。
3 4x=(51-x)×233 4x=51×23-x×23(34+23)x=34X=34÷1712X=24女生:51-24=27(人)比。
应用“按比分配”解决问题。
男生人数×34=女生×23男生人数:女生人数=23:34男生人数:女生人数=8:98+9=17男生:51×817=24(人)女生:51×917=27(人)比。
应用“份数法”解决问题。
男生人数×34=女生×23男生人数:女生人数=23:34男生人数:女生人数=8:9 51÷(8+9)=3(人)男生:3×8=24(人)女生:3×9=27(人)方法4:设男生人数为单位“1”,则女生人数是男生人数的:34÷23=98男生:51÷(1+98)=24(人)女生:51-24=27(人)同理也可以设女生人数为单位“1”,则男生人数是女生人数的:23÷34=89女生:51÷(1+89)=27(人)男生:51-27=24(人)巩固练习:1、图书馆买来科技书和文艺书共340本,文艺书的本数的13和科技书的45相等。
分数应用题(转化单位“1”、抓不变量、逆推法)我们解答分数应用题时,经常会发现,在同一道题目中出现不同的单位“1”,造成解题困难。
这种时候,我们可以根据题意,转化其中的单位“1”,使单位“1”能够统一起来。
1、甲乙丙三人植树,甲植树的棵数是另外两人总数的1/3,乙植树的棵数是另外两人总数的1/4,丙植树的棵是22棵,三人一共植树多少棵?甲、乙各植树多少棵?2、甲乙丙丁四人共植树120棵,甲植树的棵数是其余三人的1/2,乙植树的棵数是其余三人的1/3,丙植树的棵数是其余三人的1/4,丁植树多少棵?3、五(1)班原计划抽调1/5的人参加义务劳动,临时又有三人主动参加,使实际参加劳动的人数是余下人数的1/3,原计划抽调多少人参加?在一些分数应用题当中,会出现一些变化量,造成题目中单位“1”的量无法确定,为解题增加了难度。
这种情况,我们要善于发现题中的“不变量”,抓住“不变量”进行分析。
有的时候,可以先求出不变量,然后利用其作为中间条件进行解答;有的时候,则应以不变量作为单位“1”,转化题中的关键句,统一单位“1”后再进行解答。
4、某图书馆有科技书和文艺书共630本,其中科技书占1/5,后来又买来一部分科技书,这时科技书占总数的3/10。
又买来科技书多少本?5、饲养场养了白猪、黑猪共500头,白猪占2/5,后来又购进一批白猪,这时白猪占2/3,问购进多少头白猪?2 6、 学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少51,最近又买来一批科技书,这时科技书和文艺书本数的比是9:10。
图书馆买来科技书多少本?逆推应用题也就是我们常说的倒推法,我们在分析时需要反向思考。
在解答分数应用题时,也经常出现这种逆向思维的应用题,一般情况下,比较简单的可采用方程解,特殊情况下,我们采用逆推反而比较容易解答,有些还可以借助表格进行逆推。
7、 一个修路队修一条公路,第一周修了全长的1/6,第二周修了余下了的2/5,这时还剩下2.4千米没有修,这段公路长多少米?8、 仓库存粮若干吨,第一次运出总数的1/2又4吨,第二次运出余下的1/2又3吨,第三次运出余下的1/2又5吨,最后还剩下12吨,这个仓库原来存粮多少吨?9、 修一段路,第一天修全路的21还多2千米,第二天修余下的31少1千米,第三天修余下的41还多1千米,这样还剩下20千米没有修完,求公路全长。
第九讲 分数应用题--转化单位“1”【知识概述】分数应用题研究的是数与量的对应关系,确定单位“1”是解答分数应用题的关键。
解题时就要注意抓住单位"1"的量,要注意分析题中分率和具体数量的对应关系:如果已知单位"1"的量,求分率对应的具体的数量就用乘法。
如果已知分率对应的具体数量,求单位"1",就要用除法。
温馨提示:对于题中多个单位"1"的量,要注意转化。
【典型例题】 例1 名士小学原有科技书、文艺书共630本,其中科技书占51,后来又买进一些科技书,这时科技书占这两种书的103,又买进科技书多少本? 【名师】根据题意:文艺书的本数是不变的,因此要从这里寻得解题的突破口。
文艺书占原来总本数的54511=-,也就是630 54⨯=504(本),同时也占增加后总本数的1071031=-,说明后来共有504 107÷=720(本),这就说明买进科技书720-630=90(本).解:(1) 文艺书的本数:630=-⨯)511(504(本)(2) 后来共有书的本数为:504÷)1031(-=720(本)(3) 又买进科技书多少本?720-630=90(本) 答:又买进科技书90本。
例2 日立工厂两个车间,甲车间每月的产值比乙车间多16万元,甲车间每月产值的152等于乙车间的32,问两个车间每月产值各是多少万元? 【名师】这一道题中,分数间的关系比较隐蔽,我们不妨先将“甲车间每月产值的152等于乙车间产值的32”这个条件两边同时乘以32的倒数23,我们就可以清楚的看出“甲车间每月的产值的51等于乙车间的产值” ,即把甲车间每月的产值看作单位“1”,乙车间占51,“甲车间每月的产值比乙车间多16万元”,这样可求甲车间每月的产值:16÷(1-51)=20(万元),乙车间每月的产值:20⨯51=4(万元)解:“甲车间每月的152等于乙车间产值的32”可知“甲车间每月的产值的51等于乙车间的产值” 甲车间每月的产值:16÷(1-51)=20(万元)乙车间每月的产值:20⨯51=4(万元)答:甲车间每月的产值20万元,乙车间每月的产值4万元。
转化单位“1”(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的ba ;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =adbc 。
例题1、乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815练习11、乙数是甲数的34 ,丙数是乙数的35 ,丙数是甲数的几分之几?2、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3、一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?例题2、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,第二周修了多少米?解一:8000×14 ×45=1600(米)先求量解二:8000×(14 ×45 )=1600(米)先求对应分率 答:第二周修了1600米。
练习2用两种方法解答下面各题: 1、一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114 倍,第二次用去黄沙多少吨?2、 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78 ,长颈鹿可活多少年?3、仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?例题3、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页) 答:这本书有300页。
练习31、有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35 ,还剩90吨没有运。
转化单位“1”解决较复杂的分数应用题教学目标:1、理解单位“1”的含义和在实际问题中的表现形式,能判断问题中的单位“1”的对应数量是已知的还是未知的;2、熟练应用数量关系式:单位“1”的数量×分率=分率对应的数量。
教学重点:1、确定单位“1”,理清数量关系(通过画线段图或列文字等式,熟练后可在大脑中构建数量关系等式);2、正确判断复杂分数应用题的题型特征并应用正确的方法解决问题。
教学难点:1、熟悉分数应用题中特有的数学语言;2、在理解的基础上熟练运用基本运算原则;教学过程:一、激趣导入我们已经学过分数乘除法的解题方法,如:求一个数的几分之几是多少,用乘法计算;已知一个数的几分之几是多少,求这个数,用除法计算;单位“1”已知,用乘法计算,单位“1”未知,用除法计算;部分量÷部分量所对应的分率=总量二、新课1、知识迁移我们已经学过很多用转换法来解决问题的知识,如:通分、平面图形的面积、长(正)方体的表面积计算等等。
今天,我们就来学习在分数应用题里的 “转换单位ʻ1ʼ来解决较复杂的分数应用题”的方法。
2、解决问题 小明看一本故事书,第一天看了全书的41,第二天又看了30页,这时已看页数是未看页数的 21 。
这本书有多少页? ①、课堂探索、质疑(1)、小组合作,讨论:题目中出现了几个单位“1”?(2)、这几个单位“1”一样吗?如果不一样,想想该怎么办(转换单位“1”)(3)、说一说你是怎样转换的。
(4)、你能用画线段图的方法来解决吗?②、精讲提升例:小明看一本故事书,第一天看了全书的41,第二天又看了30页,这时已看页数是未看页数的21。
这本书有多少页?30÷(31-41) 1430页31 32=30÷121 =30×12=360(页)答:这本书有360页。
三、巧练反馈 一批白菜第一天卖出了52,第二天卖出了90千克,这时卖了的与没卖的比是5:3,第一天卖出多少千克?90÷(535 -52)×52 =90÷409×52 =90×940×52 =160(kg )答:第一天卖出160kg 。
六年级数学分数应用题之单位“1”转化【例题精讲】例1、甲、乙两数的和是360,甲数的1/4等于乙数的1/5,问甲、乙两数各是多少?练习1:1、甲、乙两数相差60,其中甲的3/10与乙的1/3相等,求两数的和是多少?2、商店运来了一批苹果和梨,已知苹果比梨多2筐,其中苹果的3/7与梨的1/2的筐数相等,那么商店共运来了多少筐水果?3、学校有排球和足球共100个,排球个数的1/3比足球个数的1/10多16个,学校有排球和足球个多少个?例2、开学了,学校组织四、五、六年级向灾区捐款,四年级捐款数是另外两个年级的2/3,五年级捐款数是另外两个年级的3/5,已知六年级捐款1800元,那么三个年级共捐款多少元?练习2:4、甲、乙、丙、丁四个工程队合修一条公路,结果甲修了另外三个工程队的1/2,乙修了另外三个工程队的1/3,丙修了另外三个工程队的1/4,丁工程队修了182米,问这条公路的全长多少米?5、将一些鸡蛋分装在四个盒子里,其中1/5放入甲盒,1/3放入乙盒,放入丙盒的个数是甲乙两盒总数的3/4,丁盒放入了20个鸡蛋,这批鸡蛋一共有多少个?6、甲、乙、丙三个数的和是120,甲比另外两个数少4/5,乙比另外两个数少1/2,那么丙数是多少?例3、有红、黄两种小球共133个,如果拿出红球的1/4,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?练习3:7、有红、黄两种小球共140个,如果拿出红球的1/4,再拿出7个黄球,那么剩下的红球和黄球正好一样多。
原来红球和黄球各有多少个?8、植树节到了,学校计划购回一批杨树和柳树120棵,如果种下杨树的1/4,再购回20棵柳树,那么杨树和柳树的棵数正好相等。
原计划购回杨树和柳树各多少棵?9、哥哥和弟弟一共有250元零花钱,如果哥哥花去自己钱数的1/8,弟弟再存入50元,那么哥哥和弟弟的钱数相等,问:原来哥哥和弟弟各有多少元?例4、把一批化肥分给三个村庄,甲村先分得这批面粉的2/5,乙村分得余下的2/5,最后丙村分得14。
1、一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时行了余下路程的2/5,第二小时比第一小时多行15千米。
甲乙两地相距多少千米?2、六(1)班的男生人数比女生人数多4人,已知男生人数的3/7与女生人数的1/2相同,六(1)班共有学生多少人?3、水果批发部运进苹果、梨和橘子共216吨,其中橘子的重量是梨的2/3,梨的重量是苹果的3/4。
三种水果各运进了多少吨?4、甲乙两辆车同时从AB两地相向而行,在距中点5千米处相遇,已知甲车的速度是乙车的5/7,求AB两地相距多少米?5、学校买回一批书分给甲乙丙三个班,甲班分得总数的9/20,乙班分得的书是甲班的2/3,已知丙班比甲班少60本。
问甲班分得多少本?6、农贸市场运来西红柿和茄子共385千克。
西红柿卖掉2/3,茄子卖掉3/5,剩下的这两种菜重量相等。
求运来西红柿和茄子个多少千克?7、有两堆煤,第一堆运走它的3/4,第二堆运走它的2/3,两堆剩下的合在一起相当于第一堆的3/4。
如果两堆原来共有105吨,那么两堆煤原来各有多少吨?8、体育室里的篮球的个数是排球的3/4。
篮球借出20%后,排球就比篮球多16个。
体育室里原来有篮球和排球各多少个?9、甲乙丙丁四位老师向希望工程捐款,甲的捐款书是另外三人捐款总数的1/3,乙的捐款数是另外三人捐款总数的1/4,丙的捐款数是另外三人捐款总数的1/5,丁捐款460元。
求四位老师共捐款多少元?10、一个工程队用两个月修完了一段路第一个月修了全长的2/5多120米,第二个月修的路比第一个月的5/6多60米。
这段路全长多少米?11、已知甲校学生数是乙校学生数的2/5,甲校的女生数是甲校学生数的3/10,乙校男生数乙校学生数的21/50,那么,两校女生总数占两校学生总数的几分之几?12、学校把360本科技书分配给甲乙丙三个班,甲班的1/2等于乙班的1/3,等于丙班的1/4,甲乙丙三个班各分得多少本?。
复习:1、牛的头数比羊的头数少20%,羊的头数比牛的头数多百分之几?2、甲仓存粮的吨数比乙仓少40%,乙仓存粮的吨数比甲仓多百分之几?3、男生比女生少27,女生比男生多百分之几?4、水结成冰体积增加110,冰化成水体积减少几分之几?例1、小明三天看完一本书,第一天看了全书的14,第二天看了余下的25,第二天比第一天多看了15页。
这本书共有多少页?练习一:1、有一批货物,第一天运了这批货物的1 4,第二天运了第一天的35,还剩90吨没运。
这批货物有多少吨?1、修路队在一条公路上施工,第一天修了这条路的14,第二天修了余下的23,已知这两天共修了1200米。
这条公路全长多少米?2、加工一批零件,甲先加工了这批零件的25,接着乙加工了余下的49。
已知已加工个数比甲少200个。
这批零件共有多少个?例2:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的34,已知第三车间比第一车间多40人。
三个车间一共有多少人?练习二、1、某小学五年级三个班植树,一班植树的棵树占三个班总棵数的15,二班与三班植树棵数的比是3∶5,二班比三班少植树40棵。
这三个班各植树多少棵?2、图书角有故事书、科技书、文艺书这三种书。
故事书的本数占总数的25,科技书的本数是文艺书的34,文艺书比故事书少20本。
图书角共有图书多少本?3、食堂买萝卜、青菜和土豆三种蔬菜。
萝卜的重量占三种蔬菜总重量的25,青菜的重量比土豆少34,萝卜比土豆少360千克。
食堂买来萝卜多少千克?例3、甲数是乙数的23,乙数是丙数的34,甲、乙、丙的和是216。
甲、乙、丙各是多少?练习三:1、甲数是乙数的56,乙数是丙数的34,甲、乙、丙的和是152。
甲、乙、丙各是多少?2、橘子的千克数是苹果的23,香蕉的千克数是橘子的23,香蕉和苹果共有260千克。
橘子有多少千克?3、某中学初中部三个年级中,初一的学生数是初二学生数的910,初三的学生数是初二学生数45,这个学校里初三的学生数占初中部学生总数的几分之几?例4:某班共有学生51人,男生人数的3 4等于女生人数的23。
人教版六年级分数除法应用题单位‘1’转化与统一题中若出现多个单位“1”;单位“1”有变化;或较复杂情况时,需要统一单位“1”才能解决问题。
把不同的数量当做单位“1”,得到得的分率可以在一定的条件下转化。
【常见不同单位“1”,分率转化及方法。
】(1) 某班级男生是女生的85,男生占全班人数的几分之几?女生比男生多几分之几?男生比女生少百分之几?(2) 甲比乙少54,甲是乙的几分之几?乙比甲多百分之几?(3) 甲的53等于乙的31,乙比甲是几比几?甲是乙的几分之几?(4) 甲是乙的43,乙是丙的52,甲是丙的?甲、乙、丙三者比为多少?(5) 一推煤,第一天用去72,第二天用去剩下的53,第二天运走的占全部的几分之几?占第一天的几分之几?(6) 某班男生占全班人数的52,男生转走4人后,这是男生占31,问: ① 转走前与转走后男生各占女生的几分之几? ② 转走后男生占原来总人数的几分之几? ③ 转走前总人数与转走后总人数之比是几比几?方法:找不变量,把不变量作单位1,先求其他量是不变量的几分之几,或先求其他量与不变量的比,再求解。
晶晶看完一本书,第一天看了全书的41,第二天看余下的52,第二天比第一天多看了22页,这本书一共有多少页?【题型2】一杯糖水,糖占糖水的10分之1,再加入10g 糖后,糖占水的9分之2,原来有糖水多少克?【题型3】在的田径队男生与女生各队少人?男生的数量是不变【题型4】甲、乙两个粮仓,原来甲粮食吨数是乙的78,现在从甲仓运15吨到乙仓库后,甲仓库粮食吨数是乙仓库的119,甲仓库原来有多少吨粮食?一批货物,第一天运走60吨,第二天运走剩下的31,这是运走的货物质量与没运走的货物质量比为5:4,这批货物一共有几吨?【题型6】一个车间有102人,男员工人数的43与女员工人数的32相等。
该车间男、女员工各有多少人?【题型7】有两支燃烧速度相同的蜡烛,长度之和为56cm ,将它们同时点燃一段时间后,长蜡烛剩余部分与段蜡烛点燃前一样长,且此时短蜡烛长度刚好是剩下长蜡烛的32,点燃前长蜡烛段蜡烛各有多长?1. 小红读一本故事书,第一天读了全书的52,第二天读了余下的41,还剩96页,该故事一共有几页?2. 一根绳子,第一次用去83,第二次用去余下的41,还剩下24m,原来这根绳子有多长?3. 小明三天看一本书,第一天看了全书的 41,第二天看了余下的 52,第二天比第一天多看了 21 页,这本书共多少页?【练习2】4. 有甲、乙两袋大米,如果从甲中拿出51给乙袋,那么两袋大米一样重,原来乙袋大米质量是甲袋的几分之几?若乙袋大米重50kg ,则甲袋重多少千克?5. 六年级(2)班原来的男生人数占总人数的52,后来转进8人后,男生人数占总人数的21,六(2)班原来有多少学生?6. 有一杯糖水,糖的质量占水的51,加入20g 糖后,糖的质量占水的72,这原来杯中的糖水有多少克?7. 某班男生人数占全班的40%,后来又转走10名女生,这时男生人数占全班的50%.这个班有男生多少人?8. 一杯糖水,糖的质量占糖水的101,再加入10g 糖后,这时糖的质量占糖水的112,原来糖水有多少克?【练习3】9. 胜利厂有职工850人,男职工人数的43等于女职工人数的32。
练习七:1、某厂男职工比全厂职工总人数的35 多60人,女职工人数是男职工人数的12 ,这个工厂有职工多少人?2、一筐苹果卖掉15 后,又卖掉6千克,这时卖出的苹果重量正好是剩下的12 。
这筐苹果原来有多少千克?3、甲、乙两车共运一批煤,运完时,甲车运了总数的715 多12吨,比乙车多运12 ,甲车运了多少吨?4、纺织厂女职工人数比全厂人数的3/4还多100人,男职工人数是女职工的15 。
这个纺织厂有男职工多少人?1、有两筐梨,乙筐是甲筐的35 ,从甲筐取出5千克放入乙筐后,乙筐的梨是甲筐的。
甲、乙两筐梨各重多少千克?2、某小学低年79 级原有少先队员是非少先队员的13 ,后来又有39名同学加入了少先队组织。
这样,少先队员的人数是非少先队员的78 。
低年级有学生多少人?3、王师13 傅生产一批零件,不合格产品是合格产品的119 ,后来从合格产品中又发现2个不合格,这时的产品合格率是94%。
合格产品有多少个?4、某校六年级上学期男生占总人数的54%,本学期初转进了3名女生,转走了3名男生,这时女生占总人数的48%。
现在有男生多少人?1、某校原有长跳绳的根数占长、短跳绳总数的38 ,后来又买进20根长绳,这时长绳占跳绳总数的712 。
这个学校现有长、短跳绳的总数是多少根?2、阅览室看书的同学中,女同学占35 ,从阅览室走出5位女同学后,看书的同学中,女同学占47 ,原来阅览室里一共有多少名同学在看书?3、一堆什锦糖,其中奶糖占45%,再次放入16千克其它糖后,奶糖只占25%。
这堆糖中有奶糖多少千克?4、数学课外兴趣小组,上学期男生占59 ,这学期增加21名女生后,男生就只占25 了。
这个小组现有女生多少人?1、有两段布,一段布长40米,另一段长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布剩下的长度的35 。
每段布用去多少米?2、有两根塑料绳,一根长80米,另一根长40米,如果从两根绳上各剪去同样长的一段后,短绳所剩下的长度是长绳剩下的27 ,两根绳各剪去多少米?3、今年父亲40岁,儿子今年12岁,当儿子的年龄是父亲年龄的512 时。
六年级数学培优试卷三(分数应用题之转化单位1)
姓名: 分数:
1、一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的
几分之几?
2、甲数是乙数的23 ,乙数是丙数的34
,甲、乙、丙的和是216,甲、乙、丙各是多少?
3、修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,
第二周修了多少米?
4、晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天
比第一天多看了15页,这本书共有多少页?
5、某班共有学生51人,男生人数的43等于女生人数的3
2,这个班男、女生各有多少人?
6、图书馆买来科技书和文艺书共340本,文艺书本数的31等于科技书数的5
4。
两种书各买来多少本?
7、某厂男职工比全厂职工总人数的53多60人,女职工人数是男职工的3
1,这个厂共有职工多少人?
8、学校合唱团比舞蹈队多24人,合唱团人数的
52等于舞蹈队人数的76。
合唱团和舞蹈队各有多少人
9、甲数是乙数,丙数,丁数之和的
21,乙数是甲数,丙数,丁数之和的31,丙数是,甲数,乙数,丁数之和的
41,已知丁数是260,求甲乙丙丁四数之和。
10、学校里买回四种图书,科技书是文艺书的
43,连环画是其余三种书的31,史地书是其余三种书的
4
1,史地书比文艺书少80本,买回的四种书共多少本?
11、甲、乙、丙三人共同购买一艘游艇,甲支付的钱是其余两人的12 ,乙支付的钱是其余两人的3
1,丙支付的钱恰好是5000元。
这艘游艇的单价是多少元?
12、数学课外兴趣小组,上学期男生占9
5,这学期增加21名女生后,男生就只占5
2了,这个小组现有女生多少人?
13、某小学低年级原有少先队员是非少先队员的3
1,后来又有39名同学加入了少先队组织。
这样,少先队员的人数是非少先队员的87。
低年级有学生多少人?。