平面应力状态的几何法(2)
- 格式:pdf
- 大小:643.90 KB
- 文档页数:14
平面应力问题平面域A 内的基本方程:平衡微分方程(在A 内) 几何方程(在A 内)物理方程(在A 内)即: S 上边界条件:应力边界条件在 上)位移边界条件(在 上) 平面应变问题常体力时方程的解为特解叠加下面方程的通解0,0.yx x y xyσX x y σY y x ∂⎫∂++=⎪∂∂⎪⎬∂∂⎪++=⎪∂∂⎭ττ, , .x y xy u v v ux y x yεεγ∂∂∂∂===+∂∂∂∂11(),(),2(1).x x y y y x xy xy σσσσE E Eεμεμμγτ⎫=-=-⎪⎪⎬+⎪=⎪⎭22()1()(a)12(1)x x y y y x xy xyE σεμεμE σεμεμE τγμ⎫=+⎪-⎪⎪=+⎬-⎪⎪=⎪+⎭{}[]{}2101011002(10, 2.18)x x y y xy xy σE σσD P ⎡⎤⎧⎫⎧⎫⎢⎥⎪⎪⎪⎪⎢⎥==⎨⎬⎨⎬⎢⎥-⎪⎪⎪⎪⎢⎥-⎩⎭⎩⎭⎢⎥⎣⎦=•εμμεμμτγε式(),().x yx s x y xy s y l σm f m σl f ττ⎫+=⎪⎬+=⎪⎭σs(),().s s u u v v ⎫=⎪⎬=⎪⎭us 2222y xy x y x x yεγε∂∂∂+=∂∂∂∂.1 ,12μμμμ-→-→E E 0,0.yx x y xyσx y σy x ∂⎫∂+=⎪∂∂⎪⎬∂∂⎪+=⎪∂∂⎭ττ22,y ΦσYy x∂=-∂.2yx Φτxy ∂∂∂-=22,x ΦσXx y∂=-∂二、基本假设 1、连续性假定假定物体是连续的。
因此,各物理量可用连续函数表示。
2、完全弹性假定a.完全弹性—外力取消,变形恢复,无残余变形。
b.线性弹性—应力与应变成正比。
即应力与应变关系可用胡克定律表示(物理线性)。
3、均匀性假定假定物体由同种材料组成,因此, E 、 μ等与位置 无关。
4、各向同性假定假定物体各向同性。
E 、μ与方向无关。
应力与应力状态分析拉伸模量拉伸模量是指材料在拉伸时的弹性,其计算公式如下:拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡)其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。
更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。
§4-1 几组基本术语与概念一、变形固体的基本假设1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。
根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。
2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。
3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。
根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。
二、应力的概念1、正应力的概念分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。
由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。
沿截面法线方向的应力称为正应力,用希腊字母σ表示。
应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号Ka P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。
几种单位的换算关系为:1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P2、切应力与全应力的概念与截面相切的应力分量称为切应力,用希腊字母τ表示。
K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。
应力是指物体内部受到的力的作用,它可以通过单位面积上的力来描述。
在工程力学中,应力是非常重要的物理量,它与物体的形状、材料特性和外部力的作用密切相关。
本文将围绕应力的概念展开讨论,针对其在材料力学中的应用进行深入分析。
一、应力的定义和分类1.1 应力的概念应力是单位面积上的力,常用符号表示为σ,其计算公式为力F除以面积A,即σ=F/A。
在物体内部,由于外部力的作用,各处都会受到应力的作用,这种应力称为内应力。
而外部施加在物体表面上的力也会导致应力的产生,这种应力称为外部应力。
1.2 应力的分类根据应力的作用方向和大小,可以将应力分为正应力、剪切应力和法向应力三种类型。
正应力是垂直于物体截面的应力,常用符号表示为σn。
而沿着截面方向的应力称为剪切应力,常用符号表示为τ。
另外,法向应力是指作用在物体某一点上的应力。
二、应力状态的描述2.1 应力张量在三维空间中,一个点的应力状态可以由一个3x3的对称矩阵来描述,这个对称矩阵称为应力张量。
应力张量的分量代表了在不同方向上的应力情况,可以通过数学方法进行求解和分析。
2.2 应力状态的表示一个点处的应力状态可以通过应力张量的特征值和特征向量来表示。
特征值代表了应力状态的大小,特征向量则代表了应力作用的方向。
通过对特征值和特征向量的分析,可以判断物体处于何种应力状态,从而进行相应的力学分析和设计。
三、应力的应用3.1 工程材料的性能应力是描述物体受力情况的重要参数,它直接影响着材料的强度、刚度和韧性等性能。
在工程中,通过对材料的应力状态进行分析,可以评估材料的可靠性和安全性,为工程设计提供参考依据。
3.2 结构的稳定性对结构件的受力状态进行分析,可以判断结构在外部载荷作用下的稳定性。
通过对结构的应力分布和应力集中区域的分析,可以预测结构是否会发生破坏或失稳现象,为结构设计和改进提供重要参考。
3.3 力学设计在工程实践中,需要根据实际的力学要求来设计各种零部件和结构件。
第二节 平面应力状态如图8-3(a)所示的单元体,因外法线与z 轴重合的平面上其剪应力、正应力均为零,说明该单元体至少有一个主应力的为零,因此该单元体处于平面应力状态。
为便于研究,取其中平面abcd 来代表单元体的受力情况(图8-3b )。
任意斜截面的表示方法及有关规定如下:(1)用x 轴与截面外法线n 间的夹角α表示该截面。
(2)α得正负号:由x 轴向n 旋转,逆时针转向为正,顺时针转向为负(图8-3b 的α角为正)。
(3)ασ得正负号:拉应力为正,压应力为负(图8-3的x σ、y σ、ασ均为正值)。
(4)ατ得正负号:ατ对截面内此任一点的力矩转向,顺时针转向为正,逆时针转向为负(图8-3的x τ、ατ均为正值,y τ为负值)。
图8-3一、任意斜截面上的应力计算任意斜截面上应力有两种方法:解析法和图解法。
(一)解析法因研究的构件是平衡的,因此从构件内一点取单元体,并从单元体上取一部分(图8-3c ),则该部分也处于平衡。
由平衡条件可以求得平面应力状态下单元体任一斜截面上的应力计算公式ατασσσσσα2sin 2cos 22x yx yx --++= (8-1)ατασστα2cos 2sin 2x yx +-=(8-2)应用上式 计算ασ、ατ时,各已知应力x σ、y σ、x τ和α均用其代数值。
例8-1 求图8-4所示各点应力状态下斜截面上的应力(各应力单位是Mpa ),并用图表示出来。
解 (1) 已知:x σ=30Mpa ,y σ=-40 Mpa ,x τ=60 Mpa ,α=30º,将各数值代入式(8-1)、(8-2)得斜截面上的应力46.3960sin 6060cos 240302403030-=-++-=σ Mpa 31.6060cos 6060sin 2403030=++= τ Mpa将 30σ、 30τ方向画在斜截面上,如图8-4(1-b)所示。
(2)已知:x σ=-80Mpa ,y σ=0 Mpa ,x τ=-40 Mpa ,α=120º,将各数值代入式(8-1)、(8-2)得斜截面上的应力64.54240sin 40240cos 280280120-=+-+-=σ Mpa 64.54240cos 40240sin 280120=--=τ Mpa将 120σ、 120τ方向画在斜截面上,如图8-4(2-b)所示。
平面应力状态分析--几何法(2)
平面应力状态分析--几何法(2)
平面应力状态分析—几何法(2)
1. 求任一斜截面上的应力?
可否?
2. 求主应力及方位?
3. 求切应力最值及方位?
平面应力状态分析—几何法(2)
四. 应力圆的应用
1. 求任一斜截面ef上的应力
平面应力状态分析—几何法(2)
从应力圆的半径
CD按方位角α的转向
转动角度2α得到半径
CE。
圆周上E点的坐标
就依次为斜截面上的正
应力σ
α和切应力τ
α。
CD: 起始半径
平面应力状态分析—几何法(2)000cos(22)
cos 2cos 2sin 2sin 2cos 2sin 222x y
x y
x OF OC CF OC CE OC CD CD α
αααααα
σσσσατασ=+=++=+-+-=+-=000sin(22)sin 2cos 2cos 2sin 2sin 2cos 22x y
x FE CE CD CD α
αααααασσατατ=+=
+-=+=证明
横坐标纵坐标
平面应力状态分析—几何法(2)可以看出,应力圆上某点的坐标,对应于单元体某一斜截面上的应力(σα, τα)。
一一对应!
平面应力状态分析—几何法(2)
对比
方位角的起点单元体(解析法)应力圆(几何法)横截面起始半径CD
平面应力状态分析—几何法(2)
对比
方位角的大小单元体(解析法)应力圆(几何法)α2α
转向一致
平面应力状态分析—几何法(2)
2.求主应力及主平面位置
A 1和
B 1两点为
与主平面对应的
点,其横坐标即为
主应力σ1,σ2 。
a. 主应力数值
与解析法一致
22111max 22112min ()22()22x y x y xy x y x y xy OA OC CA OB OC CB σσσστσ=σσσσστσσ⎧+-=+=++=⎪⎪⎨+-⎪=-=-+==⎪⎩
平面应力状态分析—几何法(2) b. 主平面方位角
起始半径CD与半
径CA
的夹角即为应力
1
所在主平面的
圆上σ
1
方位角,且有
∠DCA
=2α0。
1
平面应力状态分析—几何法(2)
由于是顺时针转动,故有:
02tan(2)==xy x y
τDA ασσCA --与解析法一致
二倍角关系
11180A CB ∠= 02tan2=xy x y
τασσ--
平面应力状态分析—几何法(2)
3. 求切应力最值及方位角
G 1和G 2两点的纵坐
标分别代表最大和最小
切应力:
2
2max 1()2x y xy σ-στ=CG =+τ22min 2--()2x y xy σστ=CG =-+τ与解析法一致
平面应力状态分析—几何法(2)
起始半径CD与
的夹角即为
半径CG
1
所在截
应力圆上τ
max
面的方位角,且有
∠DCG
=2 1。
1
由于是逆时针转动,故有:
与解析法一致
1190G CA ∠= 二倍角关系1tan(2)==2x y xy σσDE ατCE
- 平面应力状态分析—几何法(2)。