第九章9.8曲线与方程
- 格式:ppt
- 大小:5.69 MB
- 文档页数:69
课时3 定点、定值、探究性问题题型一 定点问题例1 已知椭圆x 2a 2+y2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x轴正半轴和y 轴分别交于Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,所以a 2=3. 所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1), N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=my 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1,由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点.思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再争辩变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:依据动点或动线的特殊状况探究出定点,再证明该定点与变量无关.(2021·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为2 2. (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得|QA ||QB |=|P A ||PB |恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)由已知,点(2,1)在椭圆E 上,因此⎩⎪⎨⎪⎧2a 2+1b 2=1,a 2-b 2=c 2,c a =22,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点, 假如存在定点Q 满足条件,则有|QC ||QD |=|PC ||PD |=1,即|QC |=|QD |,所以Q 点在y 轴上,可设Q 点的坐标为(0,y 0).当直线l 与x 轴垂直时,设直线l 与椭圆相交于M ,N 两点,则M ,N 的坐标分别为(0,2),(0,-2),由|QM ||QN |=|PM ||PN |,有|y 0-2||y 0+2|=2-12+1,解得y 0=1或y 0=2, 所以,若存在不同于点P 的定点Q 满足条件, 则Q 点坐标只可能为(0,2),下面证明:对任意直线l ,均有|QA ||QB |=|P A ||PB |,当直线l 的斜率不存在时,由上可知,结论成立,当直线l 的斜率存在时,可设直线l 的方程为y =kx +1,A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k2k 2+1,x 1x 2=-22k 2+1,因此1x 1+1x 2=x 1+x 2x 1x 2=2k ,易知,点B 关于y 轴对称的点B ′的坐标为(-x 2,y 2), 又k QA =y 1-2x 1=kx 1-1x 1=k -1x 1,k QB ′=y 2-2-x 2=kx 2-1-x 2=-k +1x 2=k -1x 1,所以k QA =k QB ′,即Q ,A ,B ′三点共线, 所以|QA ||QB |=|QA ||QB ′|=|x 1||x 2|=|P A ||PB |,故存在与P 不同的定点Q (0,2),使得|QA ||QB |=|P A ||PB |恒成立.题型二 定值问题例2 已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率是12,其左,右顶点分别为A 1,A 2,B 为短轴的一个端点,△A 1BA 2的面积为2 3. (1)求椭圆C 的方程;(2)直线l :x =22与x 轴交于D ,P 是椭圆C 上异于A 1,A 2的动点,直线A 1P ,A 2P 分别交直线l 于E ,F 两点,求证:|DE |·|DF |为定值.(1)解 由已知,可得⎩⎪⎨⎪⎧e =c a =12,ab =23,a 2=b 2+c 2,解得a =2,b = 3.故所求椭圆的方程为x 24+y 23=1.(2)证明 由题意可得A 1(-2,0),A 2(2,0). 设P (x 0,y 0),由题意可得-2<x 0<2,∴直线A 1P 的方程为y =y 0x 0+2(x +2),令x =22得y =(22+2)y 0x 0+2,即|DE |=⎪⎪⎪⎪⎪⎪(22+2)y 0x 0+2,同理,直线A 2P的方程为y =y 0x 0-2(x -2),令x =22,得y =(22-2)y 0x 0-2,即|DF |=⎪⎪⎪⎪⎪⎪(22-2)y 0x 0-2,所以|DE |·|DF |=⎪⎪⎪⎪⎪⎪(22+2)y 0x 0+2×⎪⎪⎪⎪⎪⎪(22-2)y 0x 0-2=4y 20|x 20-4|=4y 204-x 20, 将y 20=3(4-x 20)4代入上式,得|DE |·|DF |=3, 故|DE |·|DF |为定值3.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.如图,在平面直角坐标系xOy 中,点F (12,0),直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |, 又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20,则|TS |=2r 2-d 2=2y 20-2x 0+1,由于点M 在曲线C 上,所以x 0=y 202,所以|TS |=2y 20-y 20+1=2,是定值.题型三 探究性问题例3 (2021·湖北)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1) 求椭圆C 的方程;(2) 设动直线l 与两定直线l 1:x -2y =0和l 2:x +2y =0分别交于P ,Q 两点.若直线l 总与椭圆C 有且只有一个公共点,摸索究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解 (1)由于|OM |≤|MN |+|NO |=3+1=4,当M ,N 在x 轴上时,等号成立; 同理|OM |≥|MN |-|NO |=3-1=2,当D ,O 重合,即MN ⊥x 轴时,等号成立. 所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为x 216+y 24=1.(2)①当直线l 的斜率不存在时,直线l 为x =4或x =-4,都有S △OPQ =12×4×4=8.②当直线l 的斜率存在时,设直线l :y =kx +m ⎝⎛⎭⎫k ≠±12,由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=16,消去y ,可得(1+4k 2)x 2+8kmx +4m 2-16=0.由于直线l 总与椭圆C 有且只有一个公共点,所以Δ=64k 2m 2-4(1+4k 2)(4m 2-16)=0, 即m 2=16k 2+4.①又由⎩⎪⎨⎪⎧y =kx +m ,x -2y =0,可得P ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k ;同理可得Q ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k .由原点O 到直线PQ 的距离为d =|m |1+k 2和|PQ |=1+k 2|x P -x Q |,可得S △OPQ =12|PQ |·d =12|m ||x P -x Q |=12·|m |·⎪⎪⎪⎪⎪⎪2m 1-2k +2m 1+2k =⎪⎪⎪⎪⎪⎪2m 21-4k 2.② 将①代入②得,S △OPQ =⎪⎪⎪⎪⎪⎪2m 21-4k 2=8|4k 2+1||4k 2-1|. 当k 2>14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+14k 2-1=8⎝ ⎛⎭⎪⎫1+24k 2-1>8;当0≤k 2<14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+11-4k 2=8⎝ ⎛⎭⎪⎫-1+21-4k 2. 因0≤k 2<14,则0<1-4k 2≤1,21-4k 2≥2,所以S △OPQ =8⎝ ⎛⎭⎪⎫-1+21-4k 2≥8, 当且仅当k =0时取等号.所以当k =0时,S △OPQ 的最小值为8.综合①②可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8. 思维升华 解决探究性问题的留意事项探究性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类争辩;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,实行另外合适的方法.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12.(1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A ,B 两点,与直线x =-4相交于Q 点,P 是椭圆E 上一点且满足OP→=OA →+OB →(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP →·TQ →为定值?若存在,求出点T 的坐标及OP →·TQ →的值;若不存在,请说明理由.解 (1)抛物线y 2=8x 的焦点为椭圆E 的顶点,即a =2.又c a =12,故c =1,b = 3.∴椭圆E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),∵OP →=OA →+OB →,∴P (x 1+x 2,y 1+y 2),联立⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,得(4k 2+3)x 2+8kmx +4m 2-12=0.由根与系数的关系,得x 1+x 2=-8km 4k 2+3,y 1+y 2=k (x 1+x 2)+2m =6m 4k 2+3.将P ⎝ ⎛⎭⎪⎫-8km 4k 2+3,6m 4k 2+3代入椭圆E 的方程,得64k 2m 24(4k 2+3)2+36m 23(4k 2+3)2=1,整理,得4m 2=4k 2+3. 设T (t,0),Q (-4,m -4k ),∴TQ →=(-4-t ,m -4k ),OP →=⎝ ⎛⎭⎪⎫-8km 4k 2+3,6m 4k 2+3.即OP →·TQ →=32km +8kmt 4k 2+3+6m (m -4k )4k 2+3=6m 2+8km +8kmt4k 2+3.∵4k 2+3=4m 2,∴OP →·TQ →=6m 2+8km +8kmt 4m 2=32+2k (1+t )m.要使OP →·TQ →为定值,只需⎣⎢⎡⎦⎥⎤2k (1+t )m 2=4k 2(1+t )2m 2=(4m 2-3)(1+t )2m 2为定值,则1+t =0,∴t =-1, ∴在x 轴上存在一点T (-1,0),使得OP →·TQ →为定值32.19.设而不求,整体代换典例 (12分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1、PF 2的斜率分别为k 1、k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值.思维点拨 第(3)问,可设P 点坐标为(x 0,y 0),写出直线l 的方程;联立方程组消去y 得关于x 的一元二次方程,则Δ=0;变为1k ⎝⎛⎭⎫1k 1+1k 2,把k 与1k 1+1k 2均用x 0,y 0表示后可消去. 规范解答 解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a=1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.[3分](2)设P (x 0,y 0) (y 0≠0),又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0, lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1.[6分] 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22.由于-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0.因此-32<m <32.[8分](3)设P (x 0,y 0) (y 0≠0),则直线l 的方程为y -y 0=k (x -x 0). 联立得⎩⎪⎨⎪⎧x 22+y 2=1,y -y 0=k (x -x 0).整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.[9分] 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 24+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.[12分]温馨提示 对题目涉及的变量奇妙地引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,削减计算”的效果,直接得定值.[方法与技巧]1.求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探究与证明问题(1)探究直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊状况入手,先探求定点,再证明与变量无关. [失误与防范]1.在解决直线与抛物线的位置关系时,要特殊留意直线与抛物线的对称轴平行的特殊状况. 2.中点弦问题,可以利用“点差法”,但不要遗忘验证Δ>0或说明中点在曲线内部. 3.解打算值、定点问题,不要遗忘特值法.(时间:70分钟)1.(2021·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1), 且PC →·PD →=-1, 于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1,从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3.2.已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169; 当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎪⎨⎪⎧ x 2+⎝⎛⎭⎫y +132=169,x 2+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0, Δ=144k 2+64(9+18k 2)>0, x 1+x 2=12k18k 2+9,x 1x 2=-1618k 2+9,QA →=(x 1,y 1-1),QB →=(x 2,y 2-1), QA →·QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0,∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).3.如图,在平面直角坐标系xOy 中,离心率为22的椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点.若直线PQ 的斜率为22时,PQ =2 3.(1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论. 解 (1)设P ⎝⎛⎭⎫x 0,22x 0. 由于直线PQ 的斜率为22时,PQ =23, 所以x 20+⎝⎛⎭⎫22x 02=3,所以x 20=2. 所以2a 2+1b 2=1.由于e =ca=a 2-b 2a =22,所以a 2=4,b 2=2. 所以椭圆C 的标准方程为x 24+y 22=1.(2)设P (x ,y ),Q (-x ,-y ),又A (-2,0),则k AP ·k AQ =y x +2·y x -2=2⎝⎛⎭⎫1-x24x 2-4=-12.设直线AP 的斜率为k ,则直线AQ 的斜率为-12k ,则直线AP 的方程为y =k (x +2). 令x =0,得y =2k ,所以M (0,2k ). 同理N ⎝⎛⎭⎫0,-1k . 则以MN 为直径的圆的方程为x 2+(y -2k )⎝⎛⎭⎫y +1k =0,即x 2+y 2+⎝⎛⎭⎫1k -2k y -2=0.令y =0,解得x =±2,所以以MN 为直径的圆过定点(±2,0). 4.已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. (1)解 设椭圆半焦距为c , 圆心O 到l 的距离d =61+1=3,则l 被圆O 截得的弦长为22,所以b = 2. 由题意得⎩⎪⎨⎪⎧c a =33,a 2=b 2+c 2,又b =2,∴a 2=3,b 2=2. ∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0)整理得y =kx +y 0-kx 0, 联立直线l 0与椭圆E 的方程⎩⎪⎨⎪⎧y =kx +y 0-kx 0,y 23+x 22=1, 消去y ,得2[kx +(y 0-kx 0)]2+3x 2-6=0,整理得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∵l 0与椭圆E 相切,∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0,整理得(2-x 20)k 2+2x 0y 0k -(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1k 2=-y 20-32-x 20. ∵点P 在圆O 上,∴x 20+y 20=5,∴k 1k 2=-5-x 20-32-x 20=-1.∴两条切线斜率之积为常数-1.5.(2022·福建)已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .摸索究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.解 方法一 (1)设S (x ,y )为曲线Γ上任意一点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,所以曲线Γ是以点F (0,1)为焦点、直线y =-1为准线的抛物线,所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下: 由(1)知抛物线Γ的方程为y =14x 2,设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率 k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧ y =12x 0x -14x 20,y =0得A (12x 0,0).由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3 得M (12x 0+6x 0,3).又N (0,3),所以圆心C (14x 0+3x 0,3),半径r =12|MN |=|14x 0+3x 0|,|AB |=|AC |2-r 2=[12x 0-(14x 0+3x 0)]2+32-(14x 0+3x 0)2= 6. 所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二 (1)设S (x ,y )为曲线Γ上任意一点, 则|y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上方, 所以y >-3, 所以(x -0)2+(y -1)2=y +1,化简,得曲线Γ的方程为x 2=4y . (2)同方法一.。