大跨度桥梁抗震设计要点探讨 吕诗良
- 格式:pdf
- 大小:284.19 KB
- 文档页数:2
大跨度桥梁工程抗震设计及加固方法摘要进入21世纪以来,我国的交通设施建设取得了辉煌的成绩,为人们的出行提供了极大的便利,但是很多大跨度桥梁工程由于设计不合理、抗震工作不到位,遭到了地震的严重破坏,极大地阻碍了我国交通事业的进一步发展。
如何提升大跨度桥梁的抗震性能,是当下人们需要考虑的重要问题。
基于这一问题,详细探讨地震对大跨度桥梁的破坏情况,提出一些科学合理的抗震设计方案,并拟定一系列行之有效的加固方法,为大跨度桥梁的抗震设计提供了重要的技术支撑。
关键词:大跨度;桥梁;抗震;加固地震往往会给人们带来巨大的经济损失和安全问题,大跨度桥梁由于结构复杂、跨度较长,受地震的影响最为明显。
因此在以后的大跨度桥梁设计施工当中,必须做好抗震设计及加固处理,进一步提升大跨度桥梁的力学性能,更好地抵抗地震产生的冲击与破坏。
一、地震对大跨度桥梁的破坏性分析(一)桥梁上部结构损坏当下大跨度桥梁工程结构较为复杂,上部结构最容易受到地震的破坏,具体的损坏方式有三种,即碰撞损坏、移位损坏、自身损坏等,由于桥梁上部结构需要承受重力载荷和使用载荷,设计过程中通常采用弹性设计,在发生地震时,桥梁上部结构基本上可以保持弹性,对于5级以下的地震来说,对桥梁上部结构的破坏能力有限,引起桥梁坍塌的可能性非常小。
但是桥梁上部结构的支座属于薄弱环节,受到地震影响而出现损坏的现象比较常见。
桥梁上部结构的地震惯性力是通过支座传递给下部结构的,当地震引发的力学载荷超过了支座的承受范围,那么就有可能导致支座损坏。
地震过程中,桥梁支座会承受很大的剪力和变形,如果剪力超过了支座的强度极限,就会引发支座损坏;如果支座的位移超过了支座活动最大值,就会导致桥梁倾斜或者支座错位。
如果支座在地震当中受到损坏,就有可能引发落梁问题,由此造成的经济损失是不可估量的。
(二)地基结构损坏众所周知,地震具有复杂性、不可预测性的典型特征,地基将承受多种外力作用,极易出现损坏现象。
路桥科技 大跨度桥梁抗震设计方法及抗震加固技术研究吴益波(中铁二院工程集团有限责任公司,四川 成都 610036)摘要:地震是众多自然灾害当中破坏性较大的一种,一旦发生则会快速损坏及损毁地面各类基础设施及建筑,为人们的生活造成很大的影响,甚至还会威胁人们生命安全。
在我国经济与社会的发展过程中,大跨度桥梁的建设与应用具有重要的作用,为了避免其受到地震自然灾害的影响,充分发挥其交通价值,应做好大跨度桥梁的抗震设计工作,并采取科学措施对其进行抗震加固,通过桥梁结构整体抗震性能水平的提高而降低由于地震造成的损失。
本文中,笔者首先就我国大跨度桥梁的抗震设计方法展开分析,随即就其抗震加固技术的应用进行一系列研究,以供参考。
关键词:大跨度桥梁;抗震设计;抗震加固技术;分析从上世纪末期开始,中国便逐步增加在交通基础设施建设方面的资源投入,发展至今,我国在大跨度桥梁建设方面所取得的成就已经超越很多西方发达国家。
就大跨度桥梁的数量而言,目前我国已经建成并投入使用的项目数量可占比全球大跨度桥梁总数量的50%。
现阶段,中国将基础设施建设工作的重心逐步转向西部地区,包括青海、新疆、西藏、云南以及四川等多地,并在这些高烈度区域开始了大规模的基础设施工程建设工作。
大跨度桥梁作为我国地面基础工程的重点内容,通常都是各地区交通路网系统的核心环节,具有施工周期长、资源投入力度大、以及施工影响因素复杂等特点,对我国社会及各地区经济的发展具有重要影响。
对此,应做好大跨度桥梁的设计工作,提高桥梁整体的稳固性与使用强度, 并选择相应的抗震加固技术,保证桥梁抗震安全将对提升整个区域的防震减灾能力具有重要意义。
1 大跨度桥梁的抗震设计方法分析我国大跨度桥梁抗震设计通常采用以下几种方法:抗震概念设计、延性抗震设计、减震隔震设计。
在设计方法选择中,一方面可以立足抗震概念,选用合适的抗震体系进行设计,另一方面是立足技术,对项目整体抗震能力进行科学计算,在此基础上增加减震隔震设计,强化抗震效果。
大跨度桥梁抗震设计要点探讨摘要:我国桥梁事业蓬勃发展,特别在大跨度斜拉桥方面的发展,大跨度桥梁在当地乃至国家的交通事业和经济发展中都具有举足轻重的地位;如果在地震中遭到破坏,不仅严重影响到震后的救灾工作,造成更大的经济损失,而且对于国家交通网的影响也是巨大的。
为了保证大跨度桥梁的安全,必须对其进行严格的抗震设计。
从延性抗震设计及桥梁减隔震设计等方面阐述了大跨度桥梁抗震设计重点,同时提出了相关建议。
关键词:大跨度桥梁;抗震设计;设计要点一、大跨度桥梁抗震特点简介1.1结构的延性特点结构构件具有一定的延性性能是大跨度桥梁抗震的重要特点,利用其延性特点,能够有效地抵抗地震对桥梁带来的损坏。
当地震发生时,经过延性处理的结构构件会发生塑性形变,产生允许范围内的破损,以非关键部件的损坏为代价保证桥梁结构不会发生坍塌,从而保证大跨度桥梁的安全。
相应地,大跨度桥梁结构构件还需要具有一定的滞回特性。
1.2良好的减震隔震性能大跨度桥梁一般采用铅芯橡胶支座、高阻尼橡胶支座以及摩擦摆隔震支座等减震装置,使当强震发生时,桥梁先进入塑性区,利用减震装置的高阻尼消耗产生在桥梁结构的地震能量;另外大跨度桥梁一般还配备有隔震装置,利用隔震体系,阻止地震的能量进入到桥梁的结构中去,从而避免地震对桥梁的破坏。
二、大跨度桥梁抗震设计要点分析大跨度桥梁的抗震设计通常分为两个阶段:第一阶段是方案的设计阶段,主要工作是进行抗震概念的设计,以实现抗震结构体系的科学合理;第二阶段是技术设计或初步设计阶段,主要工作是进行延性抗震设计,应参照相关的公式、原理对抗震性能进行验算,一般情况下还需要进行桥梁减隔震设计。
2.1桥梁减隔震设计传统的桥梁结构设计中,一般比较常见的策略是“抗震”,抗震设计方法可以在一定程度上提高结构的安全性,避免桥梁结构坍塌现象的发生,但是从本质上看这种抗震设计是不能完全规避地震危害的目的。
事实已证明,桥梁一些结构构件出现损伤是难以避免的,相比之下,结构控制技术在抗震上的效果要好得多,利用该技术只需将耗能支撑等装置安装在工程结构某个部位或通过施加外力的手段,使桥梁结构的动力特征给予改变,以确保其结构自身的安全性与可靠性。
1、概述大跨度桥梁与中等跨径相比,因结构的空间性与复杂性,地震反应比较复杂,高阶振型的影响比较明显。
目前大跨度桥梁的抗震设计还没有一个统一标准,国内规范没有对大跨度桥梁进行详细规定,抗震计算比较复杂。
本文主要介绍了京津城际某大跨预应力混凝土连续梁墩身、基础部分的抗震计算。
根据≤铁路工程抗震设计规范(修订)≥,运用midas有限元程序,采用反应谱分析方法计算地震力,以便为抗震设计提供依据。
本桥桥面系为无碴桥面预应力混凝土连续箱梁,其横截面为单箱单室截面,选取桥跨(40+64+40)m的预应力混凝土连续梁作为计算模型。
混凝土采用C50,梁底下缘按二次抛物线变化;采双线圆端型桥墩,3号墩为制动墩,边墩简支梁固定支座设在4号墩。
图1 全桥模型图2(a)边墩墩身尺寸图2(b)主墩墩身尺寸2、动态反应分析(一)有限元模型建立结构分析的第一步就是建立模型,模型建立的正确与否,简化的模型是否能反映结构真实的受力情况,直接影响计算结果的正确性。
本算例运用桥梁有限元计算软件Midas civil 建立全桥动力模型,模型中主梁、桥墩、承台均采用空间梁单元进行模拟,梁墩之间采用刚性连接释放约束模拟,承台底采用一般弹性支承模拟,将地基及桩基础对结构的作用简化成纵横向转动弹簧施加在承台底,平动刚度以刚性考虑。
转动弹簧计算参数列表表1 转动弹簧计算参数()计算模型图3 计算模型㈡抗震验算荷载的选取连续梁全联质量和桥墩、承台质量通过定义结构自重向X、Y,Z方向转化。
边跨简支梁质量,采用施加集中质量单元实现,纵桥向集中施加在4墩墩顶,质量大小为一跨简支梁的质量和二期恒载质量之和;横桥向施加在两边墩墩顶,质量取一跨简支梁的质量和二期恒载质量之和的一半。
全梁二期恒载184KN/m。
活载取ZK列车活载进行验算,根据≤铁路工程抗震设计规范(修订)≥要求,对于Ⅰ、Ⅱ 级铁路,应分别按有车、无车进行计算,当桥上有车时,顺桥向不计活载引起的地震力,横桥向只计50%活荷载引起的地震力,作用点在轨顶以上2m处。
大跨度桥梁抗震设计中的减震隔震技术探讨Title: Exploring Seismic Isolation and Damping Technologies in the Design of Long-Span BridgesIntroduction:As a professor and expert in the field of construction engineering, specializing in long-span bridges, and being a certified national constructor, I have dedicated years to working on numerous successful architectural and renovation projects. This article aims to present a comprehensive exploration of seismic isolation and damping technologies in the design of long-span bridges. By sharing my experience and expertise, I hope to contribute to advancing the understanding and implementation of these crucial techniques in the construction industry.1. Importance of Seismic Isolation and Damping in Long-Span Bridge Design:1.1 Understanding the seismic threat: A brief overview of the different types of earthquakes and their potential impact on a bridge's structural integrity.1.2 Significance of seismic isolation and damping technologies: Highlighting their role in mitigating seismic forces, reducing structural damage, and ensuring the safety and functionality of long-span bridges during and after earthquakes.2. Seismic Isolation Techniques:2.1 Introduction to base isolation: Discussing the concept of decoupling bridge piers from the ground using various isolation devices (e.g., lead rubber bearings, high-damping rubber bearings, and friction pendulum bearings).2.2 Factors influencing selection: Evaluating the criteria to consider when selecting suitable isolation systems, such as bridge configuration, expected earthquake magnitude, and foundation conditions.2.3 Design considerations: Outlining the key aspects to be considered in the design phase, including load-carrying capacity, horizontal flexibility, and compatibility with the surrounding structure.2.4 Case studies: Presenting successful applications of seismic isolation techniques in real-world long-span bridge projects, emphasizing the resulting performance and lessons learned.3. Damping Technologies:3.1 Passive damping devices: Exploring various passive damping technologies, such as viscous dampers, tuned mass dampers, and friction dampers, and their applications in long-span bridge design.3.2 Active damping devices: Introducing active control systems, including magneto-rheological dampers and pneumatic systems, to actively reduce bridge vibrations and increase damping capacity.3.3 Optimal utilization of damping technologies: Discussing different design principles and methodologies for effectively incorporating damping devices into long-span bridge designs, considering factors such as bridge dynamic characteristics and expected loads.3.4 Enhancing energy dissipation: Highlighting the importance of dissipating seismic energy through proper placement and combination of damping devices, leading to improved bridge performance during seismic events.4. Design Challenges and Considerations:4.1 Dynamic behavior analysis: Emphasizing the significance of conducting comprehensive dynamic analysis and response spectrum analysis to predict bridge responses to seismic excitations accurately.4.2 Verification and validation: Discussing the importance of experimental tests and numerical simulations to verify the effectiveness of seismic isolation and damping techniques prior to implementation.4.3 Durability and maintenance: Addressing the long-term durability challenges posed by these technologies and exploring potential maintenance strategies to ensure their continued effectiveness.Conclusion:In conclusion, seismic isolation and damping technologies play a crucial role in the design of long-span bridges, enabling them to withstand and effectively respond to seismic forces. This article has aimed to provide a comprehensive overview of the subject matter, discussing various techniques, their applications, design considerations, and challenges. As the construction industry continues to evolve, it is essential that professionals engage with the latest advancements in seismic isolation and damping technologies, leveraging their expertise to ensure the construction of safe and resilient long-span bridges in seismic-prone regions.。
大跨度桥梁结构设计要点研究摘要:大跨度桥梁在现阶段越来越常见,为了切实保障大跨度桥梁得以优化构建以及稳定通行,切实做好前期结构设计工作极为必要。
文章以大跨度桥梁结构设计作为研究对象,首先简要介绍了大跨度桥梁及其类型,然后又具体探讨了大跨度桥梁结构设计要点,希望具备参考借鉴作用。
关键词:大跨度桥梁;结构;设计引言伴随着现阶段我国交通系统的快速发展,大跨度桥梁项目越来越常见,尤其是对于一些地形条件并不是特别理想的区域,借助于大跨度桥梁进行处理极为必要。
大跨度桥梁的构建难度较大,稳定性的保障压力较高,尤其是对于前期设计人员,更是形成了较大挑战。
在大跨度桥梁结构设计中,设计人员应该着重考虑到各个关键设计要点,以便促使其可以具备较强的整体稳定性,避免在任何方面出现隐患,影响后续大跨度桥梁安全通行。
一、大跨度桥梁概述大跨度桥梁是现阶段比较常见的一类桥梁,其主要表现为桥梁结构的跨度较大,能够在跨越峡谷、海湾、江河等方面发挥出较为理想的作用价值。
正是因为大跨度桥梁的结构跨度较大,进而也就必然会在建设中出现较高压力,无论是现场施工作业环节,还是在前期规划设计方面,均存在着较高难度,应该予以针对性优化处理。
具体到大跨度桥梁结构设计工作中,设计人员同样也需要重点基于大跨度桥梁结构的基本特点,促使其可以形成较为理想的结构优化处理效果,尤其是对于大跨度桥梁结构体系的受力状况,就需要设计人员予以综合分析,进而选择适宜合理的设计方式,促使其整体结构较为稳定可靠。
结合现阶段比较常见的大跨度桥梁项目进行分析,比较常见的主要有以下几个类型:首先,大跨度斜拉桥是常见结构形式,可以在几乎各个地形条件下应用,即使项目所处区域不适合进行桥墩修建,同样也可以借助于该结构类型,其主要涉及到了桥面体系、缆索体系、桥塔等关键构成部分,设计人员应该促使这些结构相互之间较为协调有序,能够形成良好的支撑作用,由此维系整个斜拉桥的稳定性;其次,大跨度悬索桥在现阶段同样也比较受重视,尤其是对于跨度达到1000m以上的桥梁,往往该类处理方式较为适宜,其自重相对较强,且借助于先进材料可以提升其整体受力稳定性,成为不容忽视的重要大跨度桥梁类型,设计人员应该重点针对桥塔、吊索、主缆以及钢桥面板体系进行优化设计,以便促使其可以在较大跨度背景下,形成理想的结构稳定性;另外,钢管混凝土拱桥的应用较为普遍,作为传统拱桥在现阶段的创新发展方向,其可以在钢管中填充混凝土材料,进而促使混凝土材料可以在后续应用中表现出理想的抗压强度,为了更好优化钢管混凝土拱桥的应用效果,设计人员还需要着重做好预应力设计处理,以便借助于预应力的合理施加,促使其可以具备更强的结构稳定性,降低后续长期应用中出现故障问题的几率。
探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁作为现代桥梁工程中的重要组成部分,具有跨度大、结构复杂、技术难度高等特点。
其设计要点和优化策略对于保障桥梁的安全和稳定具有重要意义。
本文将探析大跨度桥梁设计的要点和优化策略,旨在为大跨度桥梁的设计提供参考。
一、大跨度桥梁设计的要点1. 结构稳定性大跨度桥梁跨度大,结构复杂,因此结构稳定性是设计的重点之一。
在设计过程中,需要充分考虑桥梁结构受力特点,采取合理的结构形式和构造方式,确保桥梁能够承受各种外部荷载和环境影响而不失稳定性。
2. 材料选择大跨度桥梁通常采用混凝土、钢材等材料进行构造。
在设计过程中,需要根据桥梁的实际工作环境和受力情况,选用合适的材料并进行合理的组合,以确保桥梁具有足够的承载能力和使用寿命。
3. 抗风性能大跨度桥梁容易受到风力的影响,因此抗风性能是设计的重要考虑因素。
在设计过程中,需要通过风洞实验等手段分析桥梁在风载作用下的响应情况,采取相应的措施提高桥梁的抗风性能。
4. 地震防护大跨度桥梁设计还需要考虑地震的影响。
在设计过程中,需要根据桥梁的地理位置和地震烈度等因素,合理确定桥梁的抗震设防要求,并采取相应的结构措施和材料措施,提高桥梁的抗震性能。
5. 施工工艺大跨度桥梁的施工工艺具有一定的复杂性,需要充分考虑桥梁结构的实际情况和施工条件,合理确定施工方法和工序,确保施工的安全性和有效性。
二、大跨度桥梁设计的优化策略1. 结构优化大跨度桥梁的结构优化是设计的关键环节。
通过采用先进的结构优化方法,如有限元分析、参数化设计等,对桥梁结构进行优化设计,使其在保证强度和稳定性的前提下,达到结构轻量化和材料节约的效果。
2. 材料优化大跨度桥梁的材料优化是提高桥梁整体性能的重要手段。
通过选择新型材料、改进现有材料性能、优化材料组合等方式,提高材料的强度、耐久性和抗腐蚀性能,以达到延长桥梁使用寿命和减少维护成本的目的。
3. 抗风性能优化大跨度桥梁的抗风性能优化是确保桥梁安全稳定运行的重要保障。
探析大跨度桥梁设计的设计要点与优化策略【摘要】大跨度桥梁设计在现代交通建设中占据着重要地位。
本文从引言、正文和结论三个部分来探析大跨度桥梁设计的关键要点与优化策略。
在介绍了大跨度桥梁设计的重要性,为读者提供了背景信息。
正文部分分别讨论了大跨度桥梁设计的关键要点、优化桥梁结构设计、考虑桥梁施工和维护因素、采用新技术和材料优化设计以及桥梁设计经验分享。
在结论部分对大跨度桥梁设计的要点与优化策略进行总结,强调了设计过程中需要考虑的关键因素。
通过本文的探讨,可以帮助工程师和设计师更好地理解大跨度桥梁设计的重要性,从而提高设计水平和桥梁质量。
【关键词】大跨度桥梁设计、设计要点、优化策略、桥梁结构、施工、维护、新技术、新材料、经验分享、总结1. 引言1.1 介绍大跨度桥梁设计的重要性大跨度桥梁设计是桥梁工程中的一个重要领域,它不仅在工程上有着复杂的技术挑战,而且在社会经济发展中扮演着重要的角色。
大跨度桥梁可以连接城市间的跨度,缩短交通路线,促进区域经济发展,方便人民出行。
大跨度桥梁在水利、铁路等领域也有着广泛的应用,对于国家的基础设施建设具有重要意义。
随着科技的不断进步,大跨度桥梁设计也在不断创新与优化。
优秀的大跨度桥梁设计能够在保证安全性的前提下,最大限度地降低工程成本,提高工程质量,延长桥梁的使用寿命,减少对环境的影响。
深入探讨大跨度桥梁设计的要点与优化策略,对于促进桥梁工程的发展,提高桥梁设计水平具有重要意义。
本文将详细介绍大跨度桥梁设计的关键要点和优化策略,为读者提供有益的参考和借鉴。
2. 正文2.1 大跨度桥梁设计的关键要点大跨度桥梁设计的关键要点包括许多方面,其中首要的要点是结构稳定性。
由于大跨度桥梁所承受的荷载比较大,因此在设计中必须充分考虑桥梁结构的稳定性,确保桥梁能够稳定地承受各种荷载。
还需要考虑桥梁的荷载传递路径,确保桥梁结构内部的力学传递路径是合理可靠的,避免出现单点集中荷载导致结构破坏的情况。
大跨度桥梁抗震设计要点探讨吕诗良
发表时间:2018-03-06T13:53:16.243Z 来源:《建筑学研究前沿》2017年第29期作者:吕诗良[导读] 大跨度桥梁工程已成为一种发展趋势,与普通桥梁相比,大跨度桥梁的抗震设计要求更高,因此必须高度重视这项工作。
天津市市政工程设计研究院海南海口 570203 摘要:我国属于地震多发的国家之一,地震构造基本是断裂剧烈的活动构造,具有频度大、震源浅以及强度大的特点。
为了保障人民生命与财产的安全及公路桥梁设施的完好,更好地发挥公路运输在抗震中的作用,对大跨度桥梁抗震设计提出了更高的要求,在桥梁设计上必须要对抗震设计部分加以重视,严格按照工程抗震规范,强调延性抗震和隔振设计。
提高我国大跨度桥梁的抗震设计水平,推动大跨
度桥梁的建设,不断提高人民的生活质量。
关键词:大跨度桥梁;抗震设计;实用方法;思考
1 引言
近几年,我国地震灾害的发生越发频繁,地震灾害对整个社会经济的发展以及人民的生命财产安全都造成了严重危害,为了满足当今时代社会的发展对交通运输的需求,大跨度桥梁工程已成为一种发展趋势,与普通桥梁相比,大跨度桥梁的抗震设计要求更高,因此必须高度重视这项工作。
2 地震对大跨度桥梁带来的影响及原因分析若想有效提高大跨度桥梁的抗震性能,首先需要做的就是充分掌握和了解地震时桥梁易产生破坏的位置及损害原因,并提前制定针对性的解决策略将其处理,只有这样才能综合提高大跨度桥梁的抗震水平。
根据以往地震的相关调查数据来看,大跨度桥梁地震还是存在着一定规律,具体包括以下几点:①大跨度桥梁上部分结构的损害。
一般来说,大跨度桥梁上部分结构遭到损害的情况是非常常见的,主要分为以下三种类型:即为移位损害、自身损害及碰撞损害等;②桥梁支座损害。
由于在以往传统的桥梁设计中,对桥梁支座并没有加入抗震元素,再加上地震发生时存在一些材料和结构上的问题,都会致使桥梁支座发生变形或是其他影响,从而对桥梁自身结构也会产生一定不利影响;③地基损害。
地基往往作为大跨度桥梁的基础支撑性环节,其一旦遭到地震液化,就会逐渐失去其支撑作用,极有可能导致落梁情况出现。
如果地基较为软弱,也会受到液化影响逐渐失去其应有效果,致使地基上方物体发生下沉或是倾斜情况,这对桥梁的整个结构非常不利;④大跨度桥梁下部分结构的损害。
根据实际情况来看,大多数大跨度桥梁的下部分结构都较为软弱,一旦地震级别过大,下部分结构根本无法抵抗,在其发生损害的基础上影响到整个桥梁结构;⑤桥梁自身结构存在一定不合理性,导致桥梁连接处的接缝存在空隙,这样一来地震发生时空隙就会成为地震的重要突破,从而对整个桥梁结构带来危害。
3 大跨度桥梁抗震设计原则分析3.1 桥梁结构选择原则通常在桥梁进行结构选择时,需要充分考虑到各方面可能带来的因素,如地势地形、建设规模、抗震经验及技术水平等,进而选择合理化的桥梁墩台实现抗震设计。
同时相关工作人员还应尽可能选择有利形势的抗震结构,以最大限度降低上部实际结构。
除此之外,大跨度桥梁应尽可能做到简单便捷、刚度分配均匀,且有效采用各种经济合理、技术水平先进的结构体系。
3.2 规则性和整体性原则具有较强整体性原则不但能为桥梁设计建设提供广阔的发展空间,还能有效防止地震灾害对结构构件造成损害。
同时在桥梁结构体系中存在的刚度分布不均匀现象又被称为不规则情况,这对桥梁整体结构的抗震性能提高非常不利,因而在进行抗震设计时一定要遵循规则性原则。
4 抗震设计
4.1 隔震支座法根据相关调查数据显示可知,隔震支座法可以说是防震应用中最为广泛的方法之一,其主要是指通过桥梁结构柔性程度的增加而有效降低地震所带来的反应,具体落实步骤就是将隔、减震支座安装在桥梁桥体和墩台的连接位置,合理利用各种新材料来实现桥梁柔性增加的最终目的。
该种抗震方法的应用存在较多理论实践支持,并且根据大多数的研究分析结论可知,地震所带来的真实反映与大跨度桥梁连接结构是存在紧密联系的,不但能最大限度减少墩台所受到的地震影响力,还能有效增强大跨度桥梁的抗震性能,从而为人们的生命财产安全提供保障。
4.2 有效发挥桥墩延性优势若想有效增强大跨度桥梁的抗震水平,桥梁桥墩自身存在的延性可以说是一重大突破点,如在地震发生时,桥梁自身各结构存在的稳定延性会产生弹塑性变形,长时间影响下桥梁结构周期就会延长并有效分散地震力量。
由此可知,通过大跨度桥梁其自身的延性特征,将地震所带来的巨大力量在塑性变形的影响下渐渐分散,这是桥梁抗震设计中最有效的实用方法之一。
除此之外,桥梁延性的抗震设计还可以根据弹性反应来对塑性变形程度展开准确计算,按照地震等级进行合理修正,尽量增强桥梁的抗震能力。
尤其需要注意的是在进行桥梁抗震规范设计时,综合系数就是对塑性变形程度的一个准确反映,因而我们可以根据综合系数来判断桥梁的抗震水平。
4.3 积极引进先进化的抗震设计方法根据相关调查情况来看,在以往传统的大跨度桥梁抗震设计中,具体采用方法就是使用“蛮力”。
换句话说,就是以增强桥梁实际强度和延性方式来提高其抗震性能,需要自身力量远远超过地震力量,但往往这种方法在实际应用中的抗震效果和地震影响是无法预知的,如果存在两个未知因素,非常有可能出现与人们期望相反的结果,致使桥梁遭到巨大损害,这是非常普遍的现象。
同时目前越来越多的新型化桥梁设计开始纷纷采用钢筋混凝土结构,这与传统混凝土结构存在的最大不同之处就是具有良好的先进优势,不但承载力远远超过钢筋混凝土,是其一倍以上,而且具有较强的延性、抗剪性能,进而对抗震水平的提高非常有利。
除此之外,新型钢筋混凝土结构还能有效吸收来自地震的能量,将地震危害降到最低,这样不但能全面增强桥梁结构的安全可靠性能,还能实现节省材料、成本的最终目的,这可以说是最佳的抗震实用方法之一。
4.4 抗震结构设计
地震灾害本身具有一定的复杂性和不确定性,各桥梁模型的实际情况与结构有一定的差异,这就导致了由于地震效应的影响,设计计算很难实现。
因此,在实际设计中不能完成数值计算地震时作为参考,和主要决定因素的桥梁结构抗震性能的概念是“设计”,所以桥梁设计方案的选择不能仅仅指的是静态分析和功能需求,确定方案的选择,必须采取考虑到整个桥梁结构的地震特征的前提下,在尽可能满足其他要求,抗震结构体系的最优秀的选择。
抗震概念设计在许多方面都有更高的要求,特别是在下部结构的连接上,连接应注重塑性铰的预期选址、墩上转换孔形式的设计和选择。
在结构设计中,必须站在整体的角度,注意整个桥梁结构在地震反应中的作用,并对地震破坏原理进行深入的研究和分析,了解结构破坏的全过程及其特点。
抗震设计的基本原则应灵活选择,既要保证结构的整体抗震能力,又要保证构件的抗震性能细节。
5 结束语
总之,随着目前全球地震灾害的频繁发生,我们需要做的就是有效提高桥梁抗震性能,充分认识到我国与国外在桥梁技术方面存在的差距,并通过有效措施方法来尽可能缩短差距,实现大跨度桥梁抗震的最佳效果,从而为人们的生命财产安全提供保证。
参考文献
[1]史志利,周立志.大跨度桥梁抗震设计和振动控制的研究与应用现状[J].城市道桥与防洪,2002,04:7-12+5.
[2]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].中南大学,2004.
[3]李悦.强震作用下动水压力对深水桥梁动力性能的影响研究[D].北京科技大学,2010.
[4]苏键.叠层橡胶支座力学性能和高架桥及高层隔震结构地震响应研究[D].湖南大学,2012.
[5]朱巍志.自锚式斜拉—悬索协作体系桥合理成桥状态确定与若干问题研究[D].大连理工大学,2009.。