桥梁结构抗震能力验算
- 格式:pptx
- 大小:679.92 KB
- 文档页数:37
大跨度桥梁抗震设计的结构稳定性评估与实践案例分析标题: 大跨度桥梁抗震设计的结构稳定性评估与实践案例分析摘要:在大跨度桥梁抗震设计中,结构的稳定性评估成为一项关键任务。
本文从理论和实践的角度出发,对大跨度桥梁抗震设计中的结构稳定性评估进行深入探讨,并通过实际案例分析,展示了该评估方法的有效性和实用性。
为建筑工程行业从业者提供有益的经验和指导。
关键词: 大跨度桥梁, 抗震设计, 结构稳定性, 评估, 实践案例分析正文:引言:大跨度桥梁的抗震设计是建筑工程领域中的重要议题,对于确保桥梁在地震中的安全性至关重要。
在抗震设计中,结构的稳定性评估是保证桥梁结构能够充分抵御地震力的一个关键环节。
本文将深入探讨大跨度桥梁抗震设计中结构稳定性评估的理论基础和实践方法,并通过实际案例,验证该评估方法的可行性和有效性。
一、大跨度桥梁抗震设计的结构稳定性评估原则1. 考虑动力特性: 针对大跨度桥梁的抗震设计,需要首先考虑结构的动力特性,包括自振周期、振型及自然频率等。
通过恰当的分析方法和数值模拟技术,可以获得准确的动力特性参数,为后续的稳定性评估提供依据。
2. 考虑材料特性: 结构稳定性评估中,需要充分考虑桥梁的材料特性,包括强度、刚度、粘弹性等。
对于大跨度桥梁而言,选用高强度材料,结合适当的构造措施,能够有效提升结构的抗震性能和稳定性。
3. 考虑结构形式: 不同的桥梁结构形式对抗震性能和稳定性评估有着不同要求。
根据具体桥梁的形式和工况,进行静力和动力的稳定性分析,以评估其在地震作用下的稳定性。
二、大跨度桥梁抗震设计的结构稳定性评估方法1. 静力分析: 通过应用静力学原理,对大跨度桥梁进行受力分析和稳定性评估。
此方法适用于桥梁在无地震作用下的受力分析和稳定性评估,为后续动力分析提供基础。
2. 动力分析: 结合大跨度桥梁的动力特性,采用数值模拟软件进行动力分析,了解结构在地震作用下的稳定性。
通过对结构的振型和位移响应进行分析,评估结构在地震中的稳定性表现。
桥梁支架安全验算桥梁支架是在桥梁施工中起到至关重要作用的临时支撑装置,其安全性验算是保障桥梁施工安全的一项重要工作。
本文将对桥梁支架安全验算进行探讨,以确保桥梁施工过程中的安全性。
1. 支架材料选择支架材料的选择直接影响到支架的承重能力和稳定性。
在进行桥梁支架安全验算时,应选择承载能力高、稳定性好的材料,如工业级钢材等。
此外,还应注意材料的抗震性能,以应对地震等自然灾害。
2. 支架构造设计支架的构造设计是支撑桥梁的基础,直接关系到施工过程中的安全性。
在验算过程中,需要对支架的构造设计进行详细的分析和计算。
包括支架的承重结构、连接方式、稳定性等方面的考虑。
确保支架在使用过程中不会出现塌方、倾覆等安全隐患。
3. 荷载计算桥梁支架承受着桥梁自身重量、临时荷载和其他外部荷载,因此在安全验算中需进行相应的荷载计算。
通过分析各种荷载的各向作用力,进行强度验算和稳定性评估。
保证支架在各种工况下都能够正常工作,不会超载或失稳。
4. 监测及维护桥梁支架在使用过程中应进行定期监测和维护,及时发现问题并进行修复。
专门的支架监测系统可用于检测支架的变形和损伤情况。
同时,还应加强对支架的维护,保持其完好状态,延长使用寿命。
5. 安全管理在桥梁施工过程中,要加强对支架的安全管理。
制定相应的安全管理制度,明确责任分工,加强对施工人员的安全培训,提高他们的安全意识。
此外,还应定期开展桥梁支架安全教育和技术交流,总结经验,不断提升安全管理水平。
桥梁支架的安全验算是确保桥梁施工安全的重要环节。
通过选择合适的材料、进行详细的构造设计、进行荷载计算、加强监测及维护,并加强安全管理,可以有效地保证桥梁支架在施工过程中的安全性。
只有确保桥梁支架的安全,才能保证整个桥梁工程的顺利进行。
钢结构桥梁的抗震性能分析钢结构桥梁作为现代交通建设中重要的基础设施之一,对于保障交通运输的顺畅以及人民生命财产的安全具有重要意义。
然而,地震是自然灾害中最为毁灭性的一种,对桥梁结构的破坏是常见的情况。
因此,对于钢结构桥梁的抗震性能进行分析和评估,将有助于提高其地震安全性能,减少地震灾害带来的损失。
首先,钢结构桥梁在抗震性能分析中,需要对其地震荷载进行合理的考虑和模拟。
地震荷载主要包括垂直向的重力荷载和水平向的地震力荷载。
重力荷载是指由于桥梁自重和载荷所产生的力,可以通过桥梁的结构类型和设计荷载来确定。
而地震力荷载则需要根据地震烈度和设计地震参数进行计算,常用的计算方法包括静力分析法和动力响应谱分析法。
通过合理的荷载计算和模拟,可以得到桥梁在地震作用下的应力、位移、变形等参数。
其次,在抗震性能分析中,需要对钢结构桥梁的承载力进行评估。
桥梁的承载力是指桥梁结构能够承受的最大荷载,包括静力荷载和地震荷载。
通过对桥梁结构进行荷载试验或者借助数值计算方法,可以得到桥梁在地震作用下的最大位移和应力,从而进一步评估其承载力。
同时,还需要考虑桥梁结构的破坏形态,如塑性铰形成的位置和形状。
通过承载力评估,可以判断桥梁结构是否满足抗震设计要求。
另外,钢结构桥梁的抗震性能分析还需要结合材料的性能进行考虑。
钢材是一种优良的结构材料,具有高强度、高延性和良好的疲劳性能。
然而,在地震作用下,钢结构桥梁仍然存在一定的损伤和破坏风险。
因此,在抗震性能分析中,需要考虑钢材的特性以及其在地震作用下的变形和破坏机制。
比如,考虑钢材的屈服强度和抗拉强度,以及其在地震荷载下的滞回曲线和迭加效应。
通过合理的材料参数和模型设定,可以准确评估桥梁的抗震性能。
最后,钢结构桥梁的抗震性能分析还需考虑结构的减震和抗倾覆设计。
减震设计是指通过在桥梁结构中引入减震装置,有效吸收和消散地震能量,减小地震对桥梁的影响。
常见的减震装置包括减震支座、减震橡胶隔震器和液压减震器等。
桥梁抗震规范
桥梁抗震规范是由国家规范性文件控制的,对桥梁结构在地震力作用下的有效抗震性能及设计进行指导和规约。
桥梁抗震规范中分两个部分:一部分为地震力计算和地震力抗震设计;一部分为桥梁结构体系材料性能评定及控制,全面控制桥梁施工抗震性能。
一、地震力计算和地震力抗震设计
1、地震计算:包括津门落差法的应力时程及非线性时程的确定,地震励磁幅值、地震动时程和随机动性质计算,绑定地表震级和桥梁地基质量计算,建立桥梁震源大小及励磁参数等。
2、地震力抗震设计:确定抗震性能要求,确定桥梁抗震设计结构体系,确定抗震结构控制参数,确定桥梁抗震设计分析方法,确定抗震设计措施及其设计方法。
二、桥梁结构体系材料性能评定及控制
1、桥梁结构体系材料性能评定:桥梁抗震规范要求对桥梁用材进行设计有效性能评定,明确桥梁用材形状和尺寸,以及其在正常及地震力作用下有效性能,以及桥梁连接部位评定要求。
2、材料控制:根据公路铁路工程国家规范完善桥梁用材抗震性能控制,包括在桥梁用料质量检验上,充分调动桥梁质量检验人员的责任心,有效控制桥梁施工抗震性能。
总之,桥梁抗震规范的建立和完善,整个桥梁建设施工过程抗震性能得到有效控制,为桥梁安全稳定维护、抵御地震灾害提供可靠的保障。
计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。
以下为该桥采用《公路工程抗震设计规范》(004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。
一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1= s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h iiE C C K X G βγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550==kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯=3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m 32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。
混凝土连续梁桥拓宽后抗震性能评价摘要】随着国民经济的快速发展,交通运输量大幅度增加,使上世纪末建成的高速公路的交通量适应年限明显缩短。
为此,必须通过高速公路拓宽改造或修建复线来解决这一矛盾。
对高速公路的拓宽改造,其中一个重要环节是对其中的桥梁进行拓宽,而桥梁的拓宽方式直接影响拓宽后桥梁结构的抗震性能。
因此,本文以桥梁拓宽后的抗震性能为目标,对桥梁的拓宽方式进行选择性研究分析。
为今后拓宽桥梁的抗震性能评估提供参考。
【关键词】连续梁桥;拓宽方式;地震响应;抗震性能评估Anti earthquake Performance Evaluation after concrete continuous beam bridge wideningQuan En-hou(Shandong Huatong Road and Bridge Engineering Co., Ltd. Yanbian Branch, YanjiJilin133000) 【Abstract】With rapid economic development, traffic, a substantial increase in traffic, so that end of the century the volume of traffic the highway built to adapt to life shortened significantly. Therefore, we must transform through the freeway widening or the construction of double-track to resolve this contradiction. The expansion of the highway reconstruction, one important aspect is to widen bridge, while directly affecting the expansion of the bridge widened after the seismic performance of bridge structures. Therefore, this article in order to widen the bridge after the seismic performance as the target, the bridge means to selectively broaden the research and analysis. Widen the bridge for future reference seismic performance evaluation.【Key words】Continuous girder bridge; Broadening way; Earthquake response; Anti earthquake performance evaluation1. 前言对已有桥梁结构的抗震能力的评估,从目前的研究来看, 评定结果大都为定性结论,且往往带有较强的主观色彩,缺乏定量数据的支持,难以合理有效地确定桥梁结构的修复加固方案。
主要内容第四章桥梁抗震设计
《铁路工程抗震设计规范》的适用范围:
位于常水位水深超过5m的桥墩,应计入地震动水压力对抗震检算内容及方法抗震验算规定
3)建筑材料容许应力的修正系数,应符合下表的规定。
桥墩地震作用计算
图中,
h——基础底面位于地面以下或一般冲刷线以下的深度(m)。
(二)地震力计算公式
β——
根据场地类别和地震动参数区划确定的地震动反应谱特
桥梁抗震设计实例
桥梁抗震设计实例
桥梁抗震设计实例
185.1261.8418.990.6261.8418.990.62
⎡⎢⎢
=⎢⎢⎣桥梁抗震设计实例
桥梁抗震设计实例
地基变形引起的各质点水平位移
桥梁抗震设计实例桥梁抗震设计实例。