大跨度桥梁抗震设计方法
- 格式:pdf
- 大小:265.78 KB
- 文档页数:2
大跨度桥梁工程抗震设计及加固方法摘要进入21世纪以来,我国的交通设施建设取得了辉煌的成绩,为人们的出行提供了极大的便利,但是很多大跨度桥梁工程由于设计不合理、抗震工作不到位,遭到了地震的严重破坏,极大地阻碍了我国交通事业的进一步发展。
如何提升大跨度桥梁的抗震性能,是当下人们需要考虑的重要问题。
基于这一问题,详细探讨地震对大跨度桥梁的破坏情况,提出一些科学合理的抗震设计方案,并拟定一系列行之有效的加固方法,为大跨度桥梁的抗震设计提供了重要的技术支撑。
关键词:大跨度;桥梁;抗震;加固地震往往会给人们带来巨大的经济损失和安全问题,大跨度桥梁由于结构复杂、跨度较长,受地震的影响最为明显。
因此在以后的大跨度桥梁设计施工当中,必须做好抗震设计及加固处理,进一步提升大跨度桥梁的力学性能,更好地抵抗地震产生的冲击与破坏。
一、地震对大跨度桥梁的破坏性分析(一)桥梁上部结构损坏当下大跨度桥梁工程结构较为复杂,上部结构最容易受到地震的破坏,具体的损坏方式有三种,即碰撞损坏、移位损坏、自身损坏等,由于桥梁上部结构需要承受重力载荷和使用载荷,设计过程中通常采用弹性设计,在发生地震时,桥梁上部结构基本上可以保持弹性,对于5级以下的地震来说,对桥梁上部结构的破坏能力有限,引起桥梁坍塌的可能性非常小。
但是桥梁上部结构的支座属于薄弱环节,受到地震影响而出现损坏的现象比较常见。
桥梁上部结构的地震惯性力是通过支座传递给下部结构的,当地震引发的力学载荷超过了支座的承受范围,那么就有可能导致支座损坏。
地震过程中,桥梁支座会承受很大的剪力和变形,如果剪力超过了支座的强度极限,就会引发支座损坏;如果支座的位移超过了支座活动最大值,就会导致桥梁倾斜或者支座错位。
如果支座在地震当中受到损坏,就有可能引发落梁问题,由此造成的经济损失是不可估量的。
(二)地基结构损坏众所周知,地震具有复杂性、不可预测性的典型特征,地基将承受多种外力作用,极易出现损坏现象。
桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
桥梁抗震方案随着人们对交通运输的不断需求,桥梁作为连接交通的重要纽带,承载着巨大的交通压力。
然而,在地震等自然灾害发生时,桥梁的安全性成为了一个重要的考虑因素。
为了确保桥梁在地震中的抗震能力,我们需要制定一套科学合理的抗震方案。
本文将从桥梁建设的设计阶段、施工阶段以及使用和维护阶段综合考虑,提出一种综合性的桥梁抗震方案。
一、设计阶段在桥梁的设计阶段,我们需要从以下几个方面考虑桥梁的抗震性能。
1. 地震烈度评估:首先,需要对桥梁所在地区的地震烈度进行评估,了解地震的频率、震级以及地震波特征。
根据不同地区的地震烈度,可以制定相应的抗震设计参数,确保桥梁具备足够的抗震能力。
2. 结构布局优化:优化桥梁的结构布局,采用合理的桥型和桥墩布置,以增加桥梁的整体稳定性。
比如,在地震影响较大的地区,可以采用适度的曲线形式,减小主梁的跨度,提高桥梁的抗震能力。
3. 使用抗震构件:在设计桥梁的结构时,可以使用抗震减灾技术,如采用橡胶支座、隔震墩等抗震构件,提高桥梁的整体抗震性能。
二、施工阶段在桥梁的施工阶段,抗震措施同样需要得到充分关注和实施。
1. 施工质量控制:确保桥梁的施工质量符合设计要求,特别是关键构件的安装和连接部分。
通过密实土方、控制加固浆料的配制比例、加强钢筋的质量监测等方式,提高桥梁的整体抗震性能。
2. 施工过程监控:实施严格的施工监控,对桥梁的施工过程进行实时监测和记录,发现问题及时调整施工方案,确保施工过程中的抗震要求得到满足。
三、使用和维护阶段在桥梁的使用和维护阶段,我们需要采取综合性的措施,确保桥梁的持续抗震能力。
1. 定期检测和评估:定期对桥梁进行全面检测和评估,发现桥梁结构的损伤或者变形情况,进行及时维修和加固。
同时,根据检测结果,对桥梁的抗震性能进行评估和调整。
2. 维护保养工作:加强桥梁的维护保养工作,及时清理桥梁上的积水、杂物等,防止对桥梁的结构产生影响。
定期对桥梁的防腐、涂漆等工作进行维护,保障桥梁的使用寿命和抗震能力。
1、概述大跨度桥梁与中等跨径相比,因结构的空间性与复杂性,地震反应比较复杂,高阶振型的影响比较明显。
目前大跨度桥梁的抗震设计还没有一个统一标准,国内规范没有对大跨度桥梁进行详细规定,抗震计算比较复杂。
本文主要介绍了京津城际某大跨预应力混凝土连续梁墩身、基础部分的抗震计算。
根据≤铁路工程抗震设计规范(修订)≥,运用midas有限元程序,采用反应谱分析方法计算地震力,以便为抗震设计提供依据。
本桥桥面系为无碴桥面预应力混凝土连续箱梁,其横截面为单箱单室截面,选取桥跨(40+64+40)m的预应力混凝土连续梁作为计算模型。
混凝土采用C50,梁底下缘按二次抛物线变化;采双线圆端型桥墩,3号墩为制动墩,边墩简支梁固定支座设在4号墩。
图1 全桥模型图2(a)边墩墩身尺寸图2(b)主墩墩身尺寸2、动态反应分析(一)有限元模型建立结构分析的第一步就是建立模型,模型建立的正确与否,简化的模型是否能反映结构真实的受力情况,直接影响计算结果的正确性。
本算例运用桥梁有限元计算软件Midas civil 建立全桥动力模型,模型中主梁、桥墩、承台均采用空间梁单元进行模拟,梁墩之间采用刚性连接释放约束模拟,承台底采用一般弹性支承模拟,将地基及桩基础对结构的作用简化成纵横向转动弹簧施加在承台底,平动刚度以刚性考虑。
转动弹簧计算参数列表表1 转动弹簧计算参数()计算模型图3 计算模型㈡抗震验算荷载的选取连续梁全联质量和桥墩、承台质量通过定义结构自重向X、Y,Z方向转化。
边跨简支梁质量,采用施加集中质量单元实现,纵桥向集中施加在4墩墩顶,质量大小为一跨简支梁的质量和二期恒载质量之和;横桥向施加在两边墩墩顶,质量取一跨简支梁的质量和二期恒载质量之和的一半。
全梁二期恒载184KN/m。
活载取ZK列车活载进行验算,根据≤铁路工程抗震设计规范(修订)≥要求,对于Ⅰ、Ⅱ 级铁路,应分别按有车、无车进行计算,当桥上有车时,顺桥向不计活载引起的地震力,横桥向只计50%活荷载引起的地震力,作用点在轨顶以上2m处。
大跨度桥梁抗震分析中的整体有限元法及其应用目录一、内容概要 (2)1. 桥梁工程的重要性 (2)2. 抗震分析的意义与挑战 (3)二、有限元法概述及其在桥梁抗震分析中的应用 (4)1. 有限元法基本概念与原理 (6)1.1 有限元法定义与发展历程 (7)1.2 基本原理与计算步骤 (8)2. 有限元法在桥梁抗震分析中的应用现状 (9)2.1 应用范围及优势 (10)2.2 存在的问题与挑战 (11)三、大跨度桥梁整体有限元建模与分析方法 (13)1. 整体有限元建模流程 (14)1.1 模型建立前的准备工作 (15)1.2 模型建立过程及参数设置 (16)1.3 模型验证与校准 (17)2. 大跨度桥梁整体分析方法 (19)2.1 静力分析方法 (21)2.2 动力分析方法 (22)2.3 抗震性能评估指标 (23)四、大跨度桥梁抗震分析中的关键技术与策略 (25)1. 地震波输入与选择 (27)1.1 地震波特性分析 (28)1.2 地震波输入方法比较与选择 (29)2. 结构损伤评估与修复策略 (30)2.1 结构损伤识别技术 (32)2.2 损伤程度评估方法 (34)2.3 修复策略与建议 (35)一、内容概要本文档主要介绍了大跨度桥梁抗震分析中的整体有限元法及其应用。
整体有限元法是一种将结构划分为多个单元,通过离散化的方法对整个结构进行建模和求解的方法。
在大跨度桥梁抗震分析中,整体有限元法具有较高的计算精度和效率,能够有效地模拟桥梁在地震作用下的响应过程,为桥梁的抗震设计提供有力的支持。
本文档首先介绍了大跨度桥梁的基本结构特点和抗震要求,然后详细阐述了整体有限元法的基本原理、方法和步骤,包括单元划分、刚度矩阵和边界条件设置等。
通过实例分析,展示了如何运用整体有限元法对大跨度桥梁进行抗震分析,以及如何根据分析结果优化结构设计,提高桥梁的抗震性能。
对整体有限元法在大跨度桥梁抗震分析中的应用前景和技术发展趋势进行了展望。
基于地震动参数的大跨度桥梁抗震设计在地震多发地区,大跨度桥梁的抗震设计显得尤为重要。
地震作为一种极端自然载荷,会对桥梁结构产生严重的冲击力,如果建筑师和工程师没有采取适当的抗震设计措施,桥梁结构很可能会发生倒塌,导致巨大的人员伤亡和财产损失。
在进行大跨度桥梁抗震设计时,首要的工作是确定地震动参数。
通过对地震波进行详细的分析和研究,可以得出一系列的地震动参数,例如加速度、速度、位移等。
这些参数将成为我们进行抗震设计和结构计算的基础。
在确定地震动参数后,我们可以依据这些参数进行桥梁结构的强度和刚度设计。
强度设计是指在地震冲击下,桥梁结构能够承受住地震作用产生的力和扭矩。
刚度设计则是为了保证桥梁结构能够保持足够的刚度,不发生过大的变形和位移。
大跨度桥梁的抗震设计还需要考虑桥梁的固有周期和阻尼比。
固有周期是指桥梁结构在地震波作用下的振动周期,阻尼比则决定了桥梁结构在地震波作用下的能量耗散能力。
通过合理的固有周期和阻尼比的选择,可以有效地降低地震作用对桥梁结构的影响。
在抗震设计中,还需要采取一系列的加固措施。
例如,在桥墩的设计中,可以采用斜撑或者加强横向钢筋的方式来提高桥墩的抗震能力。
此外,还可以通过增加桥梁的破坏能量吸收能力,例如设置伸缩缝、滑动支座等措施来减少地震作用对桥梁结构的冲击。
需要特别强调的是,大跨度桥梁的抗震设计不是一种简单的线性设计,而是一个复杂的非线性分析和设计过程。
工程师需要利用先进的抗震分析方法和软件,进行系统性的荷载和结构的非线性动力分析。
只有通过准确的模拟和计算,才能够得出合理的结构设计方案。
在抗震设计过程中,还需要充分考虑桥梁结构的整体性能和韧性。
韧性是指结构在受到地震作用时,具有良好的变形和能量耗散能力。
通过合理的结构形式和材料选择,可以提高结构的韧性,降低地震作用对桥梁结构的破坏程度。
综上所述,基于地震动参数的大跨度桥梁抗震设计是一项复杂而又重要的工作。
通过合理选择地震动参数、进行强度和刚度设计、考虑固有周期和阻尼比、采取加固措施以及考虑结构整体性能和韧性,能够提高大跨度桥梁的抗震能力,保护人民的生命财产安全。
大跨度桥梁抗震设计方法
发表时间:2018-05-22T10:44:07.397Z 来源:《基层建设》2018年第6期作者:赵明剑王斌
[导读] 摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。
潍坊市市政工程设计研究院有限公司山东省潍坊市 261061
摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。
以目前科技水平而言,地震尚无准确预测和控制手段;而地震的发生又是不可避免的,而我国又处于世界上两个最活跃的地震带上,因此在大垮度桥梁结构设计中研究抗震分析对地震灾害的预防是有十分重要的意义。
本文主要对大跨度桥梁抗震设计方法进行了总结,着重于工程的实际可操作性和细节的处理。
关键词:大跨度;桥梁抗震;设计方法
抗震设计在大跨度桥梁建设过程中是非常重要的一个环节,抗震设计的合理与否对桥梁的整体抗震性能有着决定的作用。
所以,在抗震设计过程中,要善于总结相关经验,分析各种震害特点,不断加深对地震机理的认识和研究,结合建设桥梁的实际功能特点,努力探究大跨度桥梁的抗震设计方法,并应用桥梁抗震加固技术,进一步提高桥梁的抗震性能,以减轻或避免震害。
1大跨度桥梁抗震设计状况
与中等跨度桥梁相比,大跨度桥梁的地震反应相对比较复杂,所以其抗震设计的难度也不断增大。
例如高阶振型的影响较大,同时还要对多点激振、行波效应等进行充分的考虑。
对于大跨度桥梁的抗震设计,具有一定的复杂性、系统性和综合性。
大跨度桥梁的反应存在多变性,因此,导致抗震设计也是多样性。
在当前的桥梁设计规范和规定中,很多内容是针对中等桥梁制定的,而对于大跨度桥梁的抗震方面,尚属于发展的前期阶段,很多问题需要得到全面、积极的解决。
JTJ004-89《公路工程抗震设计规范》规定地震烈度7度以上地区的新建桥梁都必须设计抗震设防,在桥梁抗震设计中普遍采用“小震不坏、中震可修、大震不倒”的分类设防原则。
2在地震中桥梁较易产生破坏的位置及其原因
2.1上部结构的震害
桥梁的上部结构在地震中出现损坏是比较常见的损坏主要有三种类型:分别是碰撞损坏、移位损坏和自身损坏。
由于上部结构承受自身重力荷载和使用荷载,设计时按照弹性设计,在抗震设计中通常也设计为较强的环节。
因此地震中上部结构基本上可以保持弹性。
上部结构由于自身强度不足引起的破坏仅仅是局部的。
就一般而言,上部结构的损伤引起桥梁倒塌的可能性不大。
与主梁破坏相比之下,上部结构中支座破坏却是较为常见。
上部结构的地震惯性力主要是通过支座传递到下部结构上,当支座传递的荷载超过支座的设计强度时就有可能产生支座破坏,即地震过程中,桥梁支座将承受很大的剪力和变形,当剪力超锚栓的强度后,描栓破坏,或者支座变位超过活动支座的允许值,使得桥梁倾斜或者支座错位。
支座一旦发生破坏,梁体无约束活动节点处的位移极有可能超出支座长度范围,发生落梁破坏或者由于支座失效后,主梁横向震动时,抗震挡块设置不甚合理没能够有效的防止落梁发生。
2.2地基
地基土(如饱和粉细纱和饱和粘沙土)的地震液化影响,同样加大了地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。
当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支梁桥对此尤为明显。
另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜,下沉等严重变形,进而导致结构物的破坏,震害较重。
2.3墩柱破坏
墩柱是桥梁抗侧向力的主要构件,因此墩柱的破坏是最普遍的。
墩柱破坏的主要表现形式有:弯曲强度不足、弯曲延性不足、纵筋搭接区的抗弯能力以及剪切强度不足等。
墩柱的破坏往往引起一系列的连锁反应,如落梁、整个结构的倒塌等。
而落梁对墩台侧壁的撞击又对下部结构造成新的破坏。
3大跨度桥梁的抗震设计方法
大跨度桥梁的抗震设计,具有实践性的要求,严格按照桥梁周围的环境及自身需求,规划抗震的方案。
分析大跨度桥梁的抗震设计,如下:
3.1概念设计
大跨度桥梁工程中,涉及到锚固、索结构等多项技术,先要规划出大跨度桥梁的抗震设计,再安排抗震加固措施。
概念设计在大跨度抗震中,有利于提高结构抗震的水平,决定了桥梁抗震的水平。
概念设计与抗震计算,同属于大跨度桥梁抗震设计中的措施,而概念设计,起到关键性的作用,其可根据大跨度桥梁各部分的关系,设计出抗震的措施,促使桥梁抗震具有可实施的特性,而且概念设计还能评估大跨度桥梁对地震的评估能力,致力于设计出优质的抗震结构,设计人员可以根据概念设计,灵活的更改抗震设计的方式,促使抗震设计更加符合大跨度桥梁的实际情况。
3.2延性抗震设计
首先,结构延性定义:表示结构从屈服到破坏的后期变形能力,是结构能量耗散能力的主要度量。
其次,延性抗震设计的分类:a)上部、基础弹性,墩柱延性设计;b)墩柱、基础弹性,上部结构延性(钢桥);c)墩柱、基础、上部结构弹性,支座弹缩性――减隔震设计(在后节中介绍)
最后,墩柱结构构造措施:墩柱潜在塑性铰区域内加密箍筋的配置:a)加密区的长度:弯曲方向截面宽度的1.0倍,超过最大弯矩80%的范围;b)加密箍筋的最大间距:10cm或6ds或b/4;c)箍筋的直径不应小于:10mm;d)螺旋式箍筋的接头必须采用对接,矩形箍筋应有135度的弯钩,并深入核心混凝土之内6cm以上;e)加密区箍筋肢距:25cm;f)墩柱的纵筋应尽可能延伸至盖梁或承台的另一侧面,塑性铰加密区域的箍筋应该延续到盖梁和承台内,延伸到盖梁和承台的距离不应小于墩柱长边尺寸的1/2,并不小于50cm。
3.3桥梁减、隔震设计
减、隔震技术是简便、经济、先进的工程抗震手段。
减、隔震装置是通过增大结构主要振型的周期使其落在地震能量较少的范围内或增大结构的能量耗散能力来达到减小结构地震反应的目的。
在进行抗震设计时,要根据结构特点和场地地震波的频率特性,通过选用合适的减隔震装置、相应参数以及设置方案,合理分配结构的受力和变形。
一方面,应将重点放在提高吸收能量能力从而增大阻尼和分散地震
力上,不可过分追求加长周期。
另一方面,应选用作用机构简单的减、隔震体系,并在其力学性能明确的范围内使用。
减、隔震设计的效果,需要进行非线性地震反应分析来验证。
4提高结构抗震性能的建议
采用桥梁延性控制方法。
桥梁的延性是实现桥梁结构抗震性能设计的一个重要手段,桥梁的延性反映了桥梁结构或材料在强度没有明显降低的情况下,出现的非弹性变形能力桥梁的延性可以用构件截面的曲率延性系来表示,当允许出现塑性铰时各国规范都要求塑性铰要设计在方便检修的位置。
桥墩的延性是抗震设计中可以加以利用的特点,由于桥墩自身所具备的延性将这一性质加强在强震时,这些部位所形成的稳定延性塑性铰可以产生弹塑性变形这样变形将延长结构周期并同时耗散地震的能量。
结束语
抗震设计在大跨度桥梁建设过程中是非常重要的一个环节,抗震设计的合理与否对桥梁的整体抗震性能有着决定的作用。
所以,在抗震设计过程中,要善于总结相关经验,分析各种震害特点,不断加深对地震机理的认识和研究,结合建设桥梁的实际功能特点,努力探究大跨度桥梁的抗震设计方法,并应用桥梁抗震加固技术,进一步提高桥梁的抗震性能,以减轻或避免震害。
参考文献:
[1]基于大跨度桥梁抗震设计及加固技术的研究[J].郭理学.科技与企业.2015(04)
[2]大跨度桥梁抗震设计方法及抗震加固技术[J].杨俊宁.四川水泥.2017(12)
[3]大跨度桥梁抗震设计实用方法的相关思考[J].周业超.建材与装饰.2017(37)。