第九章 电路的复频域分析法.
- 格式:ppt
- 大小:1.77 MB
- 文档页数:76
哈为啥有这些呢,产生这些概念的前提:正弦量被广泛采用,原因如下1. 电力工程,发电输电用电,正弦量使设备简单,效率高,经济2. 实验室易于产生标准的正弦量3. 有一套成熟的正弦电路的算法4. 正弦量可以利用傅里叶级数分解为不同频率的正弦量对于正弦的使用以及电路分析有这样的解释:对电路的分析其实就是对电路的建模,包括对每个元器件的建模。
纯阻性元件的数学模型很简单,只有一个方程。
而理想电感的方程会复杂一点,电压电流满足一个微分方程,而且还有关于磁链的方程。
对于非线性的二极管等等,就有更复杂的数学模型。
数学模型建立起来之后就要求解。
在求解过程中,人们发现,只有e^x和正弦函数具有一个特殊的性质,那就是不管求导多少次,都满足函数的相似性。
人们就开始研究,能否把输入都用正弦信号或者指数信号的叠加代替,带入电路的数学模型之后,计算非常简便,得到输出之后,再把输出恢复成实际的信号。
这就是傅立叶和拉普拉斯解法。
在用正弦信号求解的时候,指数函数和正弦函数又有一个牛逼的公式将两者联系起来,这就是欧拉公式,这样正弦函数的相位信息就可以放到指数函数中去。
/question/23290060/answer/24128688(转自知乎)所以与其相关的算法如期而至首先,时域算法,最容易理解,首先描述正弦量的是时域的算法(其定义的时候就是用的时间,随时间按正弦规律变化的电压和电流就是正弦量)基本的单位有:频率,周期,角频率,瞬时值,最大值,有效值相位(瞬时值变化进程)初相位相位差(前提,频率相同,反映了两个正弦量变化进程差异,而非产生波形先后,超前滞后同相反相正交)①时域——相量(将时域分析换为频域分析)细节一点,在时域的正弦表示中,根据欧拉公式,转化为了相量的形式,这其中,相量形式保持了原来正弦量的幅值、初相位信息,即两者联系为通过欧拉公式实数范围的正弦时间函数和复数范围的复指数常数一一对应但是需要注意的是,此时,我们取到的仅仅是复指数的实数部分,而且不研究旋转因子e^jwt ,原因是,在线性的电路中,全部的稳态响应也是同频率的正弦函数,没有新的频率,w显然不是研究问题的中心,也就在相量分析中放在了一边。
哈为啥有这些呢,产生这些概念的前提:正弦量被广泛采用,原因如下1. 电力工程,发电输电用电,正弦量使设备简单,效率高,经济2. 实验室易于产生标准的正弦量3. 有一套成熟的正弦电路的算法4. 正弦量可以利用傅里叶级数分解为不同频率的正弦量对于正弦的使用以及电路分析有这样的解释:对电路的分析其实就是对电路的建模,包括对每个元器件的建模。
纯阻性元件的数学模型很简单,只有一个方程。
而理想电感的方程会复杂一点,电压电流满足一个微分方程,而且还有关于磁链的方程。
对于非线性的二极管等等,就有更复杂的数学模型。
数学模型建立起来之后就要求解。
在求解过程中,人们发现,只有e^x和正弦函数具有一个特殊的性质,那就是不管求导多少次,都满足函数的相似性。
人们就开始研究,能否把输入都用正弦信号或者指数信号的叠加代替,带入电路的数学模型之后,计算非常简便,得到输出之后,再把输出恢复成实际的信号。
这就是傅立叶和拉普拉斯解法。
在用正弦信号求解的时候,指数函数和正弦函数又有一个牛逼的公式将两者联系起来,这就是欧拉公式,这样正弦函数的相位信息就可以放到指数函数中去。
/question/23290060/answer/24128688(转自知乎)所以与其相关的算法如期而至首先,时域算法,最容易理解,首先描述正弦量的是时域的算法(其定义的时候就是用的时间,随时间按正弦规律变化的电压和电流就是正弦量)基本的单位有:频率,周期,角频率,瞬时值,最大值,有效值相位(瞬时值变化进程)初相位相位差(前提,频率相同,反映了两个正弦量变化进程差异,而非产生波形先后,超前滞后同相反相正交)①时域——相量(将时域分析换为频域分析)细节一点,在时域的正弦表示中,根据欧拉公式,转化为了相量的形式,这其中,相量形式保持了原来正弦量的幅值、初相位信息,即两者联系为通过欧拉公式实数范围的正弦时间函数和复数范围的复指数常数一一对应但是需要注意的是,此时,我们取到的仅仅是复指数的实数部分,而且不研究旋转因子e^jwt ,原因是,在线性的电路中,全部的稳态响应也是同频率的正弦函数,没有新的频率,w显然不是研究问题的中心,也就在相量分析中放在了一边。