kn k1 k2 F (s) = + +⋯ + s − P1 s − P2 s − Pn
k 1、 k 2 、⋯ 、 k n 为待定系数
k i = [( s − p i ) F ( s ) ]s = p i N ( pi ) = D ′( p i )
i = 1 , 2 ,⋯ , n
∴
f (t ) = L − 1 [F (s )] =
§14 - 2 拉普拉斯变换的基本性质
1. 线性性质
L [ A1 f 1 ( t ) + A2 f 2 ( t ) ] = A1 L [ f1 ( t ) ] + A2 [ f 2 ( t ) ]
= A1 F1 ( s ) + A 2 F 2 ( s )
例14-3:若(1) f (t ) = sin ω t ,(2) f (t ) = K (1 − e −α t ), t ∈ [0, ∞) , 求其象函数。 解:(1) L[sin ω t ] = L 2 j (e jω t − e − jω t ) = 2 j [ s − jω − s + jω ] = 2 2 s +ω
s =0
= 0.1 同理 k2 = 0.5, k3 = −0.6
故 f (t ) = 0.1 + 0.5 e −2t − 0.6 e −5t
② D(s) = 0 具有共轭复根,p1 = α + jω , p2 = α - jω , 则 N (s − α − jω )F ( s ) ]s =α + jω = D ((s )) s =α + jω k1 = [ ′ s N (s) k 2 = [(s − α + j ω )F ( s ) ]s =α − jω = s =α − jω