计量经济学-一元线性回归预测模型-Eviews6
- 格式:doc
- 大小:156.50 KB
- 文档页数:6
实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。
表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。
一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。
启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。
用户可以选择数据的时间频率(Frequency)、起始期和终止期。
图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。
然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。
图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。
它们当前的取值分别是0和NA(空值)。
可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。
⒉命令方式还可以用输入命令的方式建立工作文件。
在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。
⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济学eviews一元线性回归模型实验指导民家庭人均生活消费支出与家庭人均纯收入大致呈现出线性相关关系。
(CD 表示农村居民家庭人均生活消费支出,RD 农村居民家庭人均纯收入)图2.4.1 RD —CD 散点图故假设二者之间关系设定为一元线性回归模型:i i i rd cd μββ++=10,其中cd i 各地区农村居民家庭人均生活消费支出,rd i 为各地区农村居民家庭人均纯收入,μi 为随机误差项,即除人均收入外,影响农村居民家庭人均生活消费支出的其他因素。
假设该模型满足古典假设,可运用OLS 方法估计模型的参数。
利用计量经济学软件EViews5.0。
建立工作文件STEP1:进入EViews 目录,然后双击EViews 程序图标,进入EViews 主页见图2.4.2。
图2.4.2 EViews工作界面STEP2:点击Eviews主页面菜单File\New\Workfile见图2.4.3,弹出workfile Create对话框(图2.4.4)。
在workfile structure type中选择Unsteuctured/Undated【由于本例是截面数据】,并在observation中输入观察值得个数,本例为31(图2.4.4),点击OK出现数据编辑窗口(图2.4.5)。
C——截距项;resid——残差项。
图2.4.3图2.4.4图2.4.5图2.4.6STEP3:点击Eviews 主菜单顶部按钮“objects/new objects ”,弹出new objects 对话框(图2.4.6),在Type of Object 中选择group ,并给new objects 一个名字G01,然后点击OK ,弹出对话框中即可输入变量及变量值(图2.4.7)。
图2.4.7图2.4.8 STEP4:点击图2.4.7表格中第一列顶部的灰色条,该列全部变蓝,输入变量名RD—农村居民家庭人均纯收入,然后从数据文件中导出变量RD各地区观测值;同理可定义第二列为CD —农村居民家庭人均生活消费支出,从数据文件中导出变量CD各地区观测值,见图2.4.8。
【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。
计量经济学作业操作过程详解1.进入Eviews软件2.主菜单-->File--->Workfile3.打开工作文件范围选择框,选择Annual,分别输入1985,1998。
点击完成。
4.数据输入:方法一:导入excel文件中的数据1)在excel中先建立数据文件2)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。
此时工作文件中出现变量图标。
方法二:手工数据输入主菜单--->Quick----->Empty Group分别输入变量Y、GDP的数据。
点击obs后面的灰色格子中分别输入Y、GDP。
(方法一:一个一个输入方法二:在Excel中输入完再复制粘贴)5.主菜单---->Quick----->Estimate Equation打开估计模型对话框,输入Y C GDP ,(如上图所示,注意字母之间要有空格)点击OK键。
得出Eviews的估计结果:其中12596.27为β(上面还要带个帽子,电脑打不出来),26.95415为1β。
第五步可以直接输入LS Y C GDP 等出结果6.一元线性回归模型的预测1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。
一、单选题1、假设检验采用的逻辑推理方法是A.归纳推理法B.类比推理法C.反证法D.演绎推理法正确答案:C2、在Eviews软件操作中,预测是用()命令。
A.GENERATEB.PLOTC.FORECASTD.SCAT正确答案:C3、对任意两个随机变量X和Y,若EXY=EX*EY,则()A.X和Y不独立B.X和Y相互独立C.Var(XY)=VarX*VarYD.Var(X+Y)=VarX+VarY正确答案:D4、设随机变量X1,X2,...,Xn(n>1)独立同分布,且方差σ2>0。
令随机变量Y=1n ∑X ini=1,则()A.Var(X1+Y)=n+2nσ2B.Cov(X1,Y)=1nσ2C. Var(X1−Y)=n+2nσ2D. Cov(X1,Y)=σ2正确答案:B5、设随机变量X~t(n)(n>1),Y=1X,则A. Y~F(1,n)B. Y~F(n,1)C. Y~χ2(n−1)D. Y~χ2(b)正确答案:B二、多选题1、变量的显著性T检验的步骤有哪些?A.以原假设H0构造T统计量B.对总体参数提出假设C.给定显著性水平α,查t分布表得临界值tα/2(n-2)D.比较t统计量和临界值正确答案:A、B、C、D2、随机误差项的主要影响因素是A.变量观测值的观测误差的影响B.在解释变量中被忽略的因素的影响C.都不是D.模型关系的设定误差的影响正确答案:A、B、D3、下列中属于最小二乘法基本假设的有A.解释变量X是确定性变量,不是随机变量B.m服从零均值、同方差、零协方差的正态分布:μi~N(0,σμ2) i=1,2, …,nC.随机误差项μ与解释变量X之间不相关:Cov(Xi,μi)=0i=1,2, …,nD.随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。
正确答案:A、B、C、D4、最小二乘估计量的性质A.有效性B.无偏性C.一致性D.线性性正确答案:A、B、D5、缩小置信区间的途径有哪些A.增大样本容量B.降低模型的拟合优度C.提高模型的拟合优度D.减小样本容量正确答案:A、C三、判断题1、可以通过散点图来确定模型的形式。
计量经济学eviews术语一、Eviews概述1. Eviews(强大的计量经济学软件)是由IHS Econometric Software开发的一种功能强大的计量经济学统计处理软件,它可以方便快捷地进行数据处理、分析和可视化操作。
2. Eviews能够便捷地帮助用户完成计量经济学研究,包括统计模型估计、模型诊断检验、多变量时间序列分析和计量经济学分析等;它还能方便快捷地使用MS office将分析结果编辑和可视化。
二、Eviews的功能1. 数据管理:Eviews自带了一系列的数据输入和数据输出工具,可以帮助用户快速方便地管理资料,以及对资料进行编辑和可视化处理;2. 统计模型估计:Eviews支持多种统计模型,包括OLS回归分析、层次序贯回归模型、正交调整后最小二乘回归模型、线性混合效应模型和定量萃取法等;3. 模型检验:内置强大的检验工具,能够帮助用户完成关键的模型检验,比如偏差检验、Wald检验、F检验、变量检验等;4. 数据预测:当给定模型后,Eviews可以用来作出预测、预测标准误差和预测置信区间等;5. 计量经济学分析:Eviews能完整支持计量经济学的常规分析,包括模型检验和模型反校正、波特尔共同分析、多变量滞后效应模型等;6. 时间序列分析:Eviews支持多种时间序列模型,能够用来完成季节性分析、指数平滑法、ARIMA模型、VAR/VECM模型等。
三、 Eviews的优点1. 功能强大:Eviews支持多种计量经济学和数据处理功能,能够实现完整的计量经济学分析工作;2. 易学易用:Eviews设计为易学易用,它拥有完备的在线帮助、脚本以及可视化界面,容易上手,操作简单;3. 多种文件支持:支持Excel, Access和其他常见的文件格式,实现多样数据传输;4. 多种输出形式:Eviews输出形式支持多种文件,如EPS、PDF、XLS、DOC、HTML等,方便快捷地与MS Office交互;5. 易于升级:Eviews的升级也十分简便,可以在线自动更新,不需要重新安装只需要下载更新即可。
数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演示性、综合性、设计性):综合性实验时间:2017年 3 月 1 日一、实验课题一元线性回归预测模型二、实验目的和意义用回归模型预测木材剩余物(1)用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验;(2)求y t的点预测和平均木材剩余物产出量E(y t)的置信区间预测。
(3)假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。
三、解题思路1、录非结构型的数据;2、进行描述性统计,列出回归模型;通过看t、f等统计量,检验回归模型是否正确3、运用forecast进行内预测(1-16样本),可以得到yf的点预测;再运用[yf+se]、[yf-se]进行区间估计(运用excel操作)4、将样本范围改到17个,令x=20,运用forecast进行外预测(17-17)四、实验过程记录与结果1、原始数据:乌伊岭26.1361.4东风23.4948.3新青21.9751.8红星11.5335.9五营7.1817.8上甘岭 6.817友好18.4355翠峦11.6932.7乌马河 6.817美溪9.6927.3大丰7.9921.5南岔12.1535.5带岭 6.817朗乡17.250桃山9.530双丰 5.5213.82、用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验;模型为:y=0.404280x-0.762928通过上表t、f统计量的p值<0.05,以及残差图基本在两倍标准差的范围内波动,可以得出该模型通过原假设。
3、求yt的点预测和平均木材剩余物产出量E(yt)的置信区间预测。
Yt的点估计:E(yt)的置信区间:4、假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。
空心点为预测值,上下两个红点是预测值的范围。
所以当x=20时,y的点预测值为7.322668五、结果的讨论和分析通过以上的实验,可知:模型为:y=0.404280x-0.762928,根据相关的统计量,可以得出该模型通过参数假设检验;yt的点预测运用内预测完成,而当2000年计划采伐木材20万立方米,运用外预测,可得木材剩余物的量为7.322668万立方米的六、实验小结通过这次实验,对eviews操作界面更加熟悉;掌握了如何建立数据的回归方程,以及参数的假设检验是否正确;运用eviews进行yt的点预测以及E(yt)的区间预测;当解释变量确定时,被解释变量应该为多少。
计量经济学软件EVIEWS6.0基本操作一、什么是EVIEWSEVIEWS (ECONOMETRIC VIEWS)软件是QMS(QUANTITATIVE MICRO SOFTWARE)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EVIEWS软件主要应用在经济学领域,可用于回归分析与预测(REGRESSION AND FORECASTING)、时间序列(TIME SERIES)以及横截面数据(CROSS-SECTIONAL DATA )分析。
与其他统计软件(如EXCEL、SAS、SPSS、stata、R)相比,EVIEWS功能优势是菜单操作简单明了,使用方法,非常适用计量经济学初级学员。
本手册对EVIEWS软件6.0版本进行简单介绍,目的是让初级学员通过本章介绍,能够对学过的计量经济理论和方法进行简单应用,以便完成本书所述的相关实验项目。
二、EVIEWS安装EVIEWS6.0文件安装包大小约190MB,可在网上下载①。
下载完毕后,按照包中安装文件所述安装方法安装该软件。
安装完毕后,将快捷键发送的桌面,电脑桌面显示有EVIEWS6.0图标,整个安装过程就结束了。
双击EVIEWS按钮即可启动该软件(图1),图1所示界面称为EVIEWS软件主窗口,主窗口中的菜单,如File菜单称为EVIEWS主菜单。
图1三、Eviews工作特点初次使EVIEWS6.0计量经济学软件,必须了解其工作过程。
如,想要完成一个校准一元线性回归模型的参数估计,必须要完成两大步工作。
第一大步工作就是在建立一个工作文档(即EVIEWS6.0中的Workfile文档)、建立变量、导入数据;第二大步工作是在第一大步工作的基础上,根据模型特征,选用适当的参数估计方法,完成参数估计及相关检验。
四、具体示例在这里,我们通过一个简单的标准一元线性回归模型的估计过程来说明Eviews软件完成回归分析的基本过程。
《计量经济学》实验报告一元线性回归模型
三、实验步骤(简要写明实验步骤)
1、数据的输入、编辑
2、图形分析与描述统计分析
3、数据文件的存贮、调用
4、一元线性回归的过程
点击view中的Graph-scatter-中的第三个获得
在上方输入ls y c x回车得到下图
在上图中view处点击view-中的actual,Fitted,Residual中的第一个得到回归残差
打开Resid中的view-descriptive statistics得到残差直方图
打开工作文件第二个中的structure将workfiels选中第一个,将右边改为16个
之后打开工作文件xy右键双击,open-as grope
在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图
在上方空白处输入ls y c s---之后点击proc 中的forcase 根据
公式)|(0^
0X Y Y E 得到2015估计量
四、实验结果及分析(将本问题的回归模型写出,并作出经济意义检。
目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。
实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。
实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。
实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。
实验二~实验十二主要都是用这些数据来完成一系列工作。
表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。
二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。
1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。
图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。
但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。
所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。
实验二一元线性回归模型2.1 实验目的掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
2.2 实验内容建立中国消费函数模型。
以表2.1中国的收入与消费的总量数据为基础,建立中国消费函数的一元线性回归模型。
表2.1数据来源:2004年中国统计年鉴,中国统计出版社2.3 实验步骤2.3.1 散点相关图分析将表1.1的GDP设为变量X,总消费设为Y,建立变量X和Y的相关图,如图2.1所示。
可以看X和Y之间呈现良好的线性关系。
可以建立一元线性回归模型。
2.3.2 估计线性回归模型在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。
也可以在EViews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(见图2.2)内输入模型:Y C X 或 Y = C (1) + C (2) * X图2.2图2.3还可以通过在EViews 命令窗口中键入LS 命令来估计模型,其命令格式为:LS 被解释变量 C 解释变量系统将弹出一个窗口来显示有关估计结果(如图2.3 所示)。
因此,我国消费函数的估计式为:ˆY2329.4010.547*X =+St 1191.923 0.014899t 1.95 36.71R 2=0.99 s.e.=2091s.e .是回归函数的标准误差,即σˆ=)216(ˆ2-∑t u。
R 2是可决系数。
R 2 = 0.99,说明上式的拟合情况好,y t 变差的99%由变量x t 解释。
因为t = 36.71> t 0.05 (15) = 2.13,所以检验结果是拒绝原假设β1 = 0,即总消费和GDP 之间存在线性回归关系。
上述模型的经济解释是,GDP 每增长1 亿元,我国消费将总额将增加0.547亿元。
图2.42.3.3 残差图在估计方程的窗口选择View\ Actual, Fitted,Residual\Actual, Fitted,Residual Table,得到相应的残差图2.4。
计量经济学eviews实验报告计量经济学Eviews实验报告引言:计量经济学是经济学中的一个重要分支,它通过运用统计学和数学方法来分析经济现象,并建立经济模型来预测和解释经济变量之间的关系。
Eviews是一种流行的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于经济学研究和实证分析。
一、数据收集与处理在进行计量经济学实验之前,首先需要收集相关的经济数据。
这些数据可以来自于各种来源,如经济统计局、金融机构或者自行收集。
然后,我们需要对数据进行处理,包括数据清洗、转换和整理,以便于后续的分析和建模。
二、描述性统计分析描述性统计分析是计量经济学中的第一步,它通过计算数据的均值、方差、相关系数等统计量来描述数据的基本特征。
在Eviews中,我们可以使用各种命令和函数来进行描述性统计分析,比如mean、var、cor等。
通过描述性统计分析,我们可以对数据的分布和变化情况有一个初步的了解。
三、回归分析回归分析是计量经济学中最常用的方法之一,它用于研究一个或多个自变量对一个因变量的影响。
在Eviews中,我们可以使用OLS(Ordinary Least Squares)命令来进行回归分析。
首先,我们需要选择一个合适的回归模型,然后通过最小二乘法估计模型的参数。
通过回归分析,我们可以得到模型的拟合优度、参数估计值和统计显著性等信息,从而判断变量之间的关系和影响程度。
四、模型诊断与改进在进行回归分析之后,我们需要对模型进行诊断和改进。
模型诊断主要包括残差分析、异方差性检验和多重共线性检验等。
在Eviews中,我们可以使用DW (Durbin-Watson)统计量来检验残差的自相关性,使用Breusch-Godfrey检验来检验异方差性,使用VIF(Variance Inflation Factor)来检验多重共线性。
如果模型存在问题,我们可以通过引入其他变量、转换变量或者使用其他的回归方法来改进模型。
实验一计量经济学软件EViews一、计量经济学软件EViews的使用实验目的:熟悉EViews软件的基本使用功能。
实验要求:快速熟悉描述统计和线性回归分析。
实验原理:软件使用。
实验数据:1978-2005年广东省消费和国内生产总值统计数据。
实验步骤:(一)启动EViews软件进入Windows以后,双击桌面EViews6图标启动EViews,进入EViews窗口。
EViews的四种工作方式:(1)鼠标图形导向方式;(2)简单命令方式;(3)命令参数方式(1与2相结合);(4)程序(采用EViews命令编制程序)运行方式。
(二)创建工作文件假定我们要研究广东省消费水平与国内生产总值(支出法)之间的关系,收集了1978—2005年28年的样本资料(表1-1),消费额记作XF(亿元),国内生产总值记作GDP(亿元)。
根据资料建立消费函数。
进入EViews后的第一件工作,通常应由创建工作文件开始。
只有建立(新建或调入原有)工作文件,EViews才允许用户输入,开始进行数据处理。
建立工作文件的方法是点击File/New/Workfile。
选择新建对象的类型为工作文件。
选择数据类型和起止日期,并在对话框中提供必要的信息:适当的时间频率(年、季度、月度、周、日);最早日期和最晚日期。
开始日期是项目中计划的最早的日期;结束日期是项目计划的最晚日期,以后还可以对这些设置进行修改。
非时间序列提供最大观察个数。
建立工作文件对话框如图1-2所示,按OK确认,得新建工作文件窗口(图1-3)。
表1-1图1-2工作文件窗口是EViews的子窗口。
它也有标题栏、控制栏、控制按钮。
标题栏指明窗口的类型是Workfile、工作文件名和存储路径。
标题栏下是工作文件窗口的工具条。
工具条上是一些按钮。
图1-3View —观察按钮;Proc —过程按钮;Save —保存工作文件;Show —显示序列数据;Fetch —读取序列;Store —存储序列;Delete —删除对象;Genr —生成新的序列;Sample —设置观察值的样本区间。
时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国内生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。
二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。
即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。
数学与统计学院实验报告
院(系):数学与统计学学院学号:姓名:
实验课程:计量经济学指导教师:
实验类型(验证性、演示性、综合性、设计性):综合性
实验时间:2017年 3 月 1 日
一、实验课题
一元线性回归预测模型
二、实验目的和意义
用回归模型预测木材剩余物
(1)用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验;
(2)求y t的点预测和平均木材剩余物产出量E(y t)的置信区间预测。
(3)假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。
三、解题思路
1、录非结构型的数据;
2、进行描述性统计,列出回归模型;通过看t、f等统计量,检验回归模型是否正确
3、运用forecast进行内预测(1-16样本),可以得到yf的点预测;再运用[yf+se]、[yf-se]进行区间估计(运用excel操作)
4、将样本范围改到17个,令x=20,运用forecast进行外预测(17-17)
四、实验过程记录与结果
翠峦11.69 32.7
乌马河 6.8 17
美溪9.69 27.3
大丰7.99 21.5
南岔12.15 35.5
带岭 6.8 17
朗乡17.2 50
桃山9.5 30
双丰 5.52 13.8
2、用Eviews软件建立y关于x的回归方程,并对模型和参数做假设检验;
模型为:y=0.404280x-0.762928
通过上表t、f统计量的p值<0.05,以及残差图基本在两倍标准差的范围内波动,可以得出该模型通过原假设。
3、求yt的点预测和平均木材剩余物产出量E(yt)的置信区间预测。
Yt的点估计:
E(yt)的置信区间:
4、假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。
空心点为预测值,上下两个红点是预测值的范围。
所以当x=20时,y的点预测值为7.322668
五、结果的讨论和分析
通过以上的实验,可知:模型为:y=0.404280x-0.762928,根据相关的统
计量,可以得出该模型通过参数假设检验;yt的点预测运用内预测完成,而当2000年计划采伐木材20万立方米,运用外预测,可得木材剩余物的量为7.322668万立方米的
六、实验小结
通过这次实验,对eviews操作界面更加熟悉;掌握了如何建立数据的回归方程,以及参数的假设检验是否正确;运用eviews进行yt的点预测以及E(yt)的区间预测;当解释变量确定时,被解释变量应该为多少。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。