高数下第6讲:二重积分
- 格式:pdf
- 大小:218.32 KB
- 文档页数:6
二重积分的计算方法在高等数学的学习中,二重积分是一个重要的概念和工具,它在解决许多实际问题和理论推导中都有着广泛的应用。
理解和掌握二重积分的计算方法对于我们深入学习数学以及解决相关的实际问题至关重要。
首先,让我们来明确一下二重积分的定义。
二重积分是在平面区域上对某个二元函数进行积分。
简单来说,就是把平面区域划分成许多小的区域,然后对每个小区域上的函数值乘以小区域的面积,再把这些乘积相加。
接下来,我们来介绍几种常见的二重积分计算方法。
一、直角坐标系下的计算方法在直角坐标系中,二重积分可以表示为两种形式:先对 x 积分再对y 积分,或者先对 y 积分再对 x 积分。
当我们选择先对 x 积分时,我们需要把积分区域投影到 x 轴上,确定 x 的积分限。
然后,对于每个固定的 x 值,在对应的垂直于 x 轴的线段上确定 y 的积分限。
例如,对于积分区域 D 是由直线 y = x ,y = 1 以及 x = 0 所围成的三角形,我们要计算二重积分∬D f(x,y)dxdy。
先对 x 积分,x 的积分限是从 0 到 y ,y 的积分限是从 0 到 1 。
则可以将二重积分化为累次积分:∫₀¹(∫₀ʸ f(x,y)dx)dy 。
同样,如果先对 y 积分,就把积分区域投影到 y 轴上,确定 y 的积分限,然后再确定每个固定 y 值对应的 x 的积分限。
二、极坐标系下的计算方法在某些情况下,使用极坐标系来计算二重积分会更加方便。
极坐标系中的坐标是(r,θ) ,其中 r 表示点到原点的距离,θ 表示极角。
在极坐标系下,二重积分的表达式为∬D f(r cosθ, r sinθ) r dr dθ 。
比如,对于圆形或者扇形的积分区域,使用极坐标系往往能简化计算。
例如,计算以原点为圆心,半径为 R 的圆上的二重积分,积分区域 D 为 x²+y² ≤ R² 。
在极坐标系中,r 的积分限是从 0 到 R ,θ 的积分限是从 0 到2π 。
高等数学-二重积分二重积分作为高等数学的一部分,是积分学的重要内容之一,也是微积分的一个重要分支。
它可以用来求解平面图形的面积、质心、转动惯量等问题,同时也是理解三重积分和曲线积分的基础。
一、二重积分的定义对于平面直角坐标系中一个有界区域D,若在D内存在一个连续函数f(x,y),则在D 上的二重积分值记为:∬Df(x,y)dxdy其中,dxdy表示对于(x,y)在D上的每一个点,都有一个微小的面积dxdy。
通常情况下,积分区域D是一个闭合区域,即被有限多条曲线所包围的区域。
1、线性性若f(x,y)和g(x,y)在D上可积,则对于任意实数a和b,有:∬D[af(x,y)+bg(x,y)]dxdy=a∬Df(x,y)dxdy+b∬Dg(x,y)dxdy2、积分的可加性若D可表示成D1和D2的并集,且D1和D2没有交集,则有:4、积分与面积的关系对于常数函数f(x,y)=1,在D上的二重积分值就是D的面积S。
即有:∬D1dxdy=S1、利用基本公式对于二重积分中的f(x,y),若其为一元函数,则参照一元函数积分的公式进行计算即可。
若其为二元函数,则按照二元函数积分的公式计算。
2、极坐标法当积分区域D具有极轴对称性或者其中的许多边界方程可以转化为极坐标方程时,可以使用极坐标公式来求解。
即有:∬Df(x,y)dxdy=∫θ1θ2dθ∫r1r2f(r,θ)rdr其中,r为极径,θ为极角。
3、换元法当积分区域D无法采用基本公式或者极坐标法求解时,可以采用换元法来简化计算。
具体而言,可以通过将坐标系进行转化,将D映射为一个较为简单的区域,从而进行二重积分的计算。
1、面积计算二重积分可以用来计算平面图形的面积。
对于平面图形D,可设其边界方程为:g1(x)=a, g2(x)=b, h1(y)=c, h2(y)=d则D的面积可以表示为:S=∬Ddxdy=∫a^b∫c^d1dydx2、质心计算x0=∬Dxdxdy/M, y0=∬Dy dxdy/M其中,M为D的面积,x0和y0分别称为D的一阶矩。
二重积分的计算方法二重积分是微积分中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
在实际问题中,我们经常需要对二元函数在某个区域上的积分进行计算,而二重积分就是用来描述这样的问题的数学工具。
本文将介绍二重积分的计算方法,希望能够帮助读者更好地理解和掌握这一知识点。
首先,我们来了解一下二重积分的定义。
对于平面上的有界闭区域D和在D 上有定义的连续函数f(x, y),我们可以将D分成许多小的面积ΔS,然后在每个小面积ΔS上取点(xi, yi),计算函数值f(xi, yi)与ΔS的乘积,然后将所有这些乘积相加,得到的极限值就是二重积分的值,即:∬D f(x, y) dxdy = lim Σ f(xi, yi)ΔS。
其中,ΔS是小面积ΔS的面积,Σ表示对所有小面积求和,极限值即为二重积分的值。
接下来,我们将介绍二重积分的计算方法。
在实际应用中,我们通常会遇到以下几种情况:1. 矩形区域上的二重积分计算。
当积分区域为矩形区域时,我们可以利用定积分的性质,将二重积分转化为两次定积分的形式进行计算。
具体而言,对于矩形区域D=[a, b]×[c, d]上的函数f(x, y),其二重积分可以表示为:∬D f(x, y) dxdy = ∫c^d ∫a^b f(x, y) dxdy。
这样,我们就可以将二重积分的计算转化为两次定积分的计算,从而简化了计算的过程。
2. 极坐标系下的二重积分计算。
在极坐标系下,二重积分的计算通常更加简便。
对于极坐标系下的二元函数f(r, θ),其二重积分可以表示为:∬D f(r, θ) drdθ。
在极坐标系下,积分区域D的描述通常更加简单,而且在计算过程中也更加方便,因此在一些问题中,我们可以通过将坐标系转化为极坐标系来简化计算过程。
3. 用换元法进行二重积分计算。
在一些复杂的情况下,我们可以利用换元法来简化二重积分的计算。
通过适当的变量替换,我们可以将原来的积分区域转化为一个更加简单的积分区域,从而简化计算过程。
二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
二重积分的概念与计算二重积分是微积分中的重要概念,在数学和物理学等领域有广泛应用。
本文将介绍二重积分的基本概念和计算方法,帮助读者更好地理解和应用该概念。
一、二重积分的基本概念二重积分是对二元函数在给定区域上的积分运算。
通常表示为∬_Df(x,y)dxdy,其中D为积分区域。
二重积分的结果是一个实数。
二、二重积分的计算方法1. 通过迭代积分计算如果积分区域D可以表示为两个范围有限的连续函数g(x)和h(x)之间的交集,即D={(x,y)|a≤x≤b,g(x)≤y≤h(x)},则二重积分可以通过先计算内层积分再计算外层积分的方式进行计算。
具体计算步骤如下:步骤1:计算内层积分将变量y看作常数,将二元函数f(x,y)带入到内层积分中,进行y 的积分运算。
得到一个关于x的函数。
步骤2:计算外层积分将步骤1得到的关于x的函数带入到外层积分中,进行x的积分运算。
得到最终的结果。
2. 通过坐标变换计算在某些情况下,二重积分的计算可以通过坐标变换来简化。
常见的坐标变换包括极坐标变换和直角坐标变换。
以极坐标变换为例,如果积分区域D可以用极坐标表示,则可以通过将二元函数f(x,y)转化为二元函数g(r,θ)来计算二重积分。
具体计算步骤如下:步骤1:进行坐标变换将二元函数f(x,y)用极坐标变换的公式来表示,并计算坐标变换的Jacobi行列式。
步骤2:计算新函数的二重积分将坐标变换后得到的二元函数g(r,θ)进行二重积分计算,得到最终结果。
三、二重积分的应用二重积分在数学和物理学中有广泛的应用。
以下是一些常见的应用场景:1. 几何体的面积二重积分可以用来计算平面上有界区域的面积。
对于给定区域D和一个常数函数f(x,y)=1,在D上进行二重积分即可得到该区域的面积。
2. 质量和质心的计算已知二元函数f(x,y)表示平面上的质量密度分布,二重积分∬_Df(x,y)dxdy可以用来计算平面上有界区域D的质量。
质心的坐标可以通过以下公式计算:x_0=1/m∬_Dxf(x,y)dxdyy_0=1/m∬_Dyf(x,y)dxdy其中m为区域D的总质量。
二重积分的计算公式二重积分是微积分中的基本内容之一,它用于计算平面上一些区域内的一些函数的面积或者平面质量分布等问题。
在进行二重积分计算时,首先需要确定被积函数、积分区域以及坐标系,然后通过适当的积分方法进行计算。
本文将介绍二重积分的计算公式及其应用。
一、二重积分计算公式1.矩形区域上的二重积分考虑一个定义在矩形区域D上的函数f(x,y),该区域上的二重积分可以通过将该区域分为许多小的矩形区域,并对每个小区域内的函数值进行求和,再取极限的方法进行计算。
设矩形区域D的边界为a≤x≤b,c≤y≤d,将其进行分割,得到对应的小矩形区域ΔxΔy,将f(x,y)在该矩形区域上的积分记为ΔI。
则整个矩形区域上的二重积分可以表示为:∬Df(x,y)dA = lim Δx,Δy→0 Σf(x,y)ΔxΔy其中Σ表示对所有小矩形区域进行求和,lim表示小矩形区域的数量趋于无穷小。
2.二重积分的换元法在计算二重积分时,有时可以通过变量替换将原来的积分变为更加简化的形式,这种方法称为换元法。
换元法的基本思想是将原坐标系中的二重积分转化为新坐标系下的二重积分,并通过求导和求逆变换的方法进行计算。
设原坐标系为(x,y),新坐标系为(u,v),变换公式为x=x(u,v),y=y(u,v),则原坐标系中的二重积分可以表示为:∬Df(x,y)dA = ∬D′f[x(u,v),y(u,v)],J(u,v),dudv其中D′为新坐标系下的区域,J(u,v)为变换矩阵的行列式,J(u,v),为其绝对值。
二、二重积分的应用1.几何应用二重积分常常用于计算平面几何中的面积和质心等问题。
例如,可以通过对平面上一个区域内的特定函数进行二重积分来计算该区域的面积,并可以通过对函数的乘积进行二重积分来计算该区域的质心位置。
2.物理应用二重积分在物理学中具有广泛的应用,特别是在计算质量分布、重心位置和力矩等问题上。
例如,可以通过对平面上一些区域的质量分布函数进行二重积分来计算该区域的总质量,并可以通过对质量分布函数与各点与一些轴线的距离的乘积进行二重积分来计算该区域对该轴线的力矩。
二重积分的概念和计算二重积分是微积分中的重要概念之一,用于求解平面区域上的面积、质量、质心等问题。
在本文中,我将详细介绍二重积分的概念和计算方法。
首先,我们来介绍二重积分的概念。
在平面上,一个闭区域可以被划分为无数个面积微元,每个微元的面积可以表示为dA。
如果我们想要求解整个闭区域的面积,我们可以将每个微元的面积相加。
这个过程可以用二重积分来表示。
二重积分的一般形式为∬f(x,y)dA,其中f(x,y)是一个定义在闭区域上的函数。
我们将f(x,y)称为被积函数,表示在闭区域上特定点(x,y)处的函数值。
而dA则表示面积微元,可以视为一个小矩形的面积。
在实际计算中,二重积分的计算可以通过累加的方式进行。
首先,我们需要确定闭区域的边界,并确定积分的次序。
闭区域的边界可以通过给出的条件或图形来确定,而积分的次序可以根据被积函数的性质来确定。
一般来说,二重积分有两种次序,即x先变化后y变化的次序和y先变化后x变化的次序。
根据被积函数的性质,我们可以选择合适的次序来进行积分。
在计算中,我们通常采用迭代的方法,将二重积分转化为两个单变量的积分来计算。
接下来,我们来介绍二重积分的计算方法。
对于一般的二重积分,我们可以将闭区域划分为无数个小矩形,并计算每个小矩形的面积。
然后,我们将每个小矩形的面积与被积函数在相应点上的函数值相乘,并将所有小矩形的面积乘以函数值的乘积相加,即可得到二重积分的值。
对于x先变化后y变化的次序,我们可以将闭区域划分为n个子区域,并将每个子区域划分为m个小矩形。
然后,我们可以选择子区域的边界上的两个点,分别为(xi,yj)和(xi+1,yj+1),其中i的取值范围为1到n,j的取值范围为1到m。
接下来,我们可以通过计算每个小矩形的面积和被积函数在相应点上的函数值来求得二重积分的近似值。
最后,我们将这些近似值相加,并取极限得到二重积分的精确值。
对于y先变化后x变化的次序,我们的计算方法类似。
二重积分公式1. 介绍二重积分是数学分析中的一个重要概念,它是对两个变量的函数在一个有界区域上的积分操作。
通过二重积分,我们可以求解曲线、曲面的面积、质心等问题,也可以用于描述物理中的电荷分布、质量分布等。
在计算二重积分时,我们需要使用各种不同的公式和方法。
其中,二重积分公式是计算过程中最基础也是最常用的工具之一。
本文将介绍二重积分的常见公式,助您更好地理解和应用二重积分。
2. 二重积分的定义设有一个二元函数f(x,y)和一个有界闭区域D,我们希望求解函数f(x,y)在区域D上的积分。
根据二重积分的定义,可以将区域D分割成许多小的块,每个小块的面积用dA表示。
然后将函数在每个小块上的取值乘以该小块的面积,再将所有小块的积分值相加,即可得到二重积分的结果。
3. 二重积分的计算方法通过定义,我们可以初步了解二重积分的计算思路,但实际计算中需要使用具体的公式和方法。
以下是常见的二重积分公式:3.1 矩形区域的二重积分若区域D为矩形,且函数f(x,y)在该矩形上连续,则可以直接计算出二重积分的结果。
其二重积分公式如下:$$ \\int \\int_{D} f(x,y) dA = \\int_{a}^{b} \\int_{c}^{d} f(x,y) dy dx $$其中,a和b分别为矩形在x轴上的边界,c和d分别为矩形在y轴上的边界。
3.2 二重积分的线性性质设有两个函数f(x,y)和g(x,y),以及常数k,在区域D上连续可积。
则有以下公式成立:$$ \\int \\int_{D} (kf(x,y) \\pm g(x,y)) dA = k \\int \\int_{D} f(x,y) dA \\pm\\int \\int_{D} g(x,y) dA $$这个公式对于简化二重积分的计算非常有用。
3.3 直角坐标系下的二重积分以直角坐标系为基准,若函数f(x,y)在区域D上连续可积,则二重积分公式可以写成以下形式:$$ \\int \\int_{D} f(x,y) dA = \\int_{x=a}^{x=b} \\int_{y=c}^{y=d} f(x,y) dy dx $$其中,x=a和x=b分别为在区域D上的两个边界,y=c和y=d分别为在区域D上的另外两个边界。
二重积分的积分方法和积分公式二重积分是高等数学中一个重要的概念,主要用于求解平面区域上的积分问题。
在实际应用中,二重积分常常伴随着一些积分方法和积分公式,有助于简化计算过程,提高计算效率。
本文将详细介绍二重积分的积分方法和积分公式。
一、二重积分的基本概念首先,我们需要了解二重积分的基本概念。
对于一个平面区域D,如果对于每一个区域内的点(x,y),都有一个实数f(x,y)与之对应,那么我们称f(x,y)是D上的一个二元函数。
此时,通过对区域D进行分割,我们可以得到很多个小区域,用矩形来近似表达每个小区域,使得这些小矩形的面积的和趋近于区域D的面积,这个和就可以作为表示f(x,y)在区域D上的对应二重积分。
其数学表达式为:∬Df(x,y)dxdy其中f(x,y)是被积函数,D是被积区域,dxdy表示在x轴和y 轴上的微小增量。
二、二重积分的积分方法1. 变量代换法变量代换法常用于解决被积函数较为复杂的情况。
通过建立一个新的变量,将原式中的变量替换为新的变量,并计算出新的变量的微分值,从而得到新的被积函数和被积区域。
例如,对于二重积分∬Dx^2y dxdy,如果我们令u=xy,v=y,那么在新的变量下,原式可化为∬D(u/v)dvdu。
此时,我们需要通过计算出u和v的微分值,将原被积函数与被积区域进行转化,从而得到简洁的结果。
2. 极坐标法极坐标法常用于解决被积区域的对称性问题。
通过将二维平面上的坐标系转化为极坐标系,可以轻松地描述出各种对称图形的被积区域,并简化计算过程。
例如,对于二重积分∬Dxy dxdy,如果我们将被积区域D转化为极坐标系下的区域,可以得到简化后的被积函数为∫0^πdθ∫0^Rρ^3sinθcosθdρ。
此时,我们只需要进行简单的积分运算,就可以得到最终的结果。
3. 分部积分法分部积分法常用于解决被积函数中的乘积项问题。
通过将乘积项拆分成不同的部分,并对每一部分进行不同的求导和积分操作,可以简化被积函数的形式,并且可以将原式化简为更易于计算的形式。
二重积分的计算方法在高等数学中,二重积分是一个重要的概念,它在许多领域都有着广泛的应用,比如物理学、工程学、经济学等。
理解和掌握二重积分的计算方法对于解决相关的实际问题和理论研究都至关重要。
二重积分的定义是在平面区域上对函数进行积分。
直观地说,它可以用来计算平面区域上某个量的总和,比如平面薄片的质量、平面区域的面积等。
那么,如何计算二重积分呢?常见的计算方法主要有直角坐标法和极坐标法。
直角坐标法是我们最常接触的方法之一。
当积分区域是由直线边界围成的矩形、三角形或者其他简单形状时,直角坐标法往往比较适用。
我们先来看 X 型区域。
如果积分区域可以表示为\(a\leq x\leqb\),\(\varphi_1(x)\leq y\leq \varphi_2(x)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{a}^{b}dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy\这里要先对\(y\)积分,再对\(x\)积分。
再来看 Y 型区域。
如果积分区域可以表示为\(c\leq y\leq d\),\(\psi_1(y)\leq x\leq \psi_2(y)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{c}^{d}dy \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx\在使用直角坐标法计算二重积分时,关键是要正确确定积分区域的类型,以及积分的上下限。
接下来我们说一说极坐标法。
当积分区域具有圆形、扇形或者是与圆相关的形状时,极坐标法通常会更加简便。
在极坐标系中,点用\((\rho,\theta)\)表示,其中\(\rho\)表示点到原点的距离,\(\theta\)表示极角。
如果积分区域可以表示为\(\alpha\leq\theta\leq\beta\),\(\varphi_1(\theta)\leq\rho\leq\varphi_2(\theta)\),那么二重积分可以写成:\\int\!\!\int_D f(x,y) d\sigma =\int_{\alpha}^{\beta}d\theta \int_{\varphi_1(\theta)}^{\varphi_2(\theta)} f(\rho\cos\theta,\rho\sin\theta)\rho d\rho\在极坐标法中,要注意\(\rho\)的积分上下限以及函数在极坐标下的表达式。
二重积分的定义和基本概念对于工程领域的许多问题,数学中的二重积分都可以提供有力的支持。
二重积分是多重积分的一种,它将一个平面区域上的函数值进行求和。
下面,让我们来一探二重积分的定义和基本概念。
一、二重积分定义为了更加深入地了解二重积分的定义,我们可以首先看一下一重积分。
一重积分即为定积分,它的计算方法是从区间的左端点到右端点逐步地进行积分。
相比之下,二重积分则需要在二维平面上使用一个小矩形,将需要积分的函数垂直投影,最后进行累计。
而在二重积分中,使用的是两个变量,我们会遍历整个区域,并计算在小矩形中的函数值。
因此,二重积分的定义为:$$\iint\limits_{D}f(x,y)dA$$其中,$D$ 代表平面区域,$f(x, y)$ 代表我们要在区域上求和的函数,$dA$ 代表小矩形的元素面积。
换句话说,在区域 $D$ 上,$f(x, y)$ 乘以小矩形的面积,最后求和得到的结果就是二重积分。
需要注意的是,由于小矩形非常小,它的面积可以看作是$dA$ 。
而由于我们要遍历整个区域,因此二重积分一般使用两个累计求和符号,其标记如下:$$\iint\limits_{D}f(x,y)dA =\lim_{n,m\to\infty}\sum_{i=1}^n\sum_{j=1}^m f(x_i,y_j)\Delta A$$二、二重积分的基本概念我们已经知道二重积分的定义,然后我们来看看它的基本概念。
这里我们着重介绍三个基本概念:积分上限、积分下限和被积函数。
1. 积分上限积分上限是指二重积分中小矩形的右上角顶点,也就是变量$x$ 的上线 $x_1$ 和变量 $y$ 的上限 $y_1$。
下同。
2. 积分下限积分下限是指二重积分中小矩形的左下角顶点,也就是变量$x$ 的下线 $x_0$ 和变量 $y$ 的下线 $y_0$。
3. 被积函数被积函数是指在积分符号中的要被积分的函数。
在二重积分中,被积函数要依次带入两个变量,如 $f(x, y)$。
一、二重积分的概念与性质1. 定义设()f x y ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域12n σσσ∆∆∆ ,,,,对小区域()12k k n σ∆= ,,上任意取一点()k k ξη,都有()01lim nk k k d k f ξησ→=∆∑,存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而1max k k nd d ≤≤=),则称这个极限值为()f x y ,在区域D 上的二重积分,记以()Df x y d σ⎰⎰,这时就称()f x y ,在D 上可积,如果()f x y ,在D 上是有限片上的连续函数,则()f x y ,在D 上是可积的。
2. 几何意义当()f x y ,为闭区域D 上的连续函数,且()0f x y ≥,,则二重积分()Df x y d σ⎰⎰,表示以曲面()z f x y =,为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。
当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()2z f x y =,,下半曲面方程为()1z f x y =,,则封闭曲面S 围成空间区域的体积为()()21Df x y f x y d σ-⎡⎤⎣⎦⎰⎰,, 3. 基本性质 (1)()()() DDkf x y d k f x y d k σσ=⎰⎰⎰⎰,,为常数(2)()()()()DDDf x yg x y d f x y d g x y d σσσ±=±⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰,,,, (3)()()()12DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,,,其中12D D D = 。
除公共边界外,1D 与2D 不重叠。
(4)若()()()f x y g x y x y D ≤∈,,,,,则()()DDf x y dg x y d σσ≤⎰⎰⎰⎰,,(5)若()()m f x y M x y D ≤≤∈,,,,则 ()DmS f x y d MS σ≤≤⎰⎰,其中S 为区域D 的面积 (6)()()DDf x y d f x y d σσ≤⎰⎰⎰⎰,,(7)积分中值定理,设(),f x y 在有界闭区域D 上连续,S 为D 的面积,则存在(),D ξη∈,使得()()Df x y d f S σξη=⎰⎰ ,,我们也把()1Df x y d S σ⎰⎰,称为()f x y ,在D 上的积分平均值。
二重积分公式1. 二重积分的定义二重积分是对二维平面上的某个区域进行积分的概念。
它是将一个函数在该区域内进行“求和”的过程。
设函数 f(x, y) 在平面区域 D 上有界,划分 D 为 m 行 n 列的小矩形,其中每个小矩形的面积为∆S。
取 D 中的一组任意点(ξi,j,ηi,j),构造函数值与面积的乘积f(ξi,j, ηi,j)⋅ ∆S,然后对所有小矩形内的乘积进行求和,即可得到二重积分的近似值。
当 m 和 n 均趋于无穷大,且∆S 趋于零时,如果此极限存在,则称此极限值为函数 f(x, y) 在区域 D 上的二重积分,记为∬Df(x, y)dS。
2. 二重积分的计算方法2.1 通过极坐标变换计算二重积分对于某些特殊的平面区域,在直角坐标系下求解二重积分可能会比较困难。
这时可以利用极坐标变换来简化计算。
设平面区域 D 在极坐标下的表示是 R(r,θ),且区域 D 内的任意一点(x, y)与极坐标下的点(r,θ)存在一一对应关系。
则二重积分∬Df(x, y)dS 可以改写为∬Rf(r cosθ, r sinθ)r dr dθ。
在极坐标下,面积微元dS = r dr dθ。
因此,对于函数 f(r cosθ, r sinθ),可以进行类似于直角坐标系下的计算方法,将其转化为对 r 和θ 的积分来求得二重积分的值。
2.2 通过直角坐标系计算二重积分除了利用极坐标变换来计算二重积分外,直角坐标系下的计算方法也是常用的。
对于平面区域 D,利用直角坐标系划分为 m 行 n 列的小矩形,每个小矩形的面积为∆S。
取每个小矩形的中点(ξi,j,ηi,j),构造函数值与面积的乘积f(ξi,j, ηi,j)⋅ ∆S,然后对所有小矩形内的乘积进行求和,即可得到二重积分的近似值。
将 m 和 n 均趋于无穷大,且∆S 趋于零时可以得到二重积分的精确值。
2.3 利用重积分的性质简化计算在实际计算二重积分时,有时可以根据重积分的性质进行简化。
二重积分的概念和计算方法二重积分是在二维平面上对一些区域上的函数进行求和的操作。
它可以用于求解平面区域上的面积、质量、重心等物理量,也可以用于解决求解二元函数的平均值、概率密度等问题。
在本文中,我们将讨论二重积分的概念以及几种常见的计算方法。
一、二重积分的概念二重积分是对二维平面上的一个闭区域D上的函数f(x,y)进行求和的操作,可以表示为:∬Df(x,y)dA其中D表示区域D上的面积,f(x,y)表示在点(x,y)上的函数值,dA 表示在D上的一个微小面积元素。
对于二重积分的计算,可以分为定积分和区域积分两种方法。
定积分的计算是将区域D划分成许多小的矩形面积,并将这些小矩形的面积乘以对应的函数值求和。
区域积分的计算是将区域D分成许多小的曲面元素,并将这些小曲面的面积乘以对应的函数值求和。
二、二重积分的计算方法1.直角坐标系下的二重积分计算在直角坐标系下,我们可以通过在区域D上设置两个变量x和y,将原来的二重积分转化为两个一重积分的问题。
将区域D分成许多小的矩形面积,每个小矩形的面积为ΔA,左下角的坐标为(x,y),则我们可以得到二重积分的计算公式为:∬D f(x,y) dA = lim ΔA→0 Σ f(x,y)ΔA其中Σ表示对所有小矩形面积求和。
对于简单的区域D,我们可以直接通过计算极限来求解二重积分。
但对于较为复杂的区域D,可以使用变量替换、拆分区域等方法来简化计算过程。
2.极坐标系下的二重积分计算在极坐标系下,我们可以通过引入极角θ和极径ρ,将二重积分转化为极坐标下的一重积分问题。
区域D可以用极坐标表示为:D={(ρ,θ),α≤θ≤β,g(θ)≤ρ≤h(θ)}。
对于极坐标下的二重积分公式,我们有:∬D f(x,y) dA = ∫βα ∫h(θ)g(θ) f(ρcosθ,ρsinθ)ρdρdθ。
通过将二重积分转化为极坐标系下的一重积分问题,可以简化复杂区域的计算过程。
3.坐标变换方法对于一些特殊的区域D,我们可以通过坐标变换来简化二重积分的计算过程。
高数下第6讲:二重积分
围成;是由圆周其中积分区域与围成;轴与直线轴,是由其中积分区域与的大小:
根据性质比较下列积分2)1()2(,)()()2(1,)()()1(.1223232=-+-++=+++⎰⎰⎰⎰⎰⎰⎰⎰y x D d y x d y x y x y x D d y x d y x D
D D
D σσσσ
;
4,)10()3(;
4,)43()2(;
20,10,)1()1(.2222222≤+++=≤+++=≤≤≤≤++=⎰⎰⎰⎰⎰⎰y x D d y x I y x D d y x I y x D d y x I D
D D
是圆域其中积分区域是圆域其中积分区域是矩形域其中积分区域的值:
根据性质估计下列积分σσσ
使,求证必存在一点且上连续在有界闭区域与设),,(0),(,),(),(.3ηξ≥y x g D y x g y x f
⎰⎰⎰⎰=D
D dxdy y x g f dxdy y x g y x f ),(),(),(),(ηξ
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-----+-++103130204024411100sin 0012
2102
2
01
0110
),(),()7(),()6(),()5(),()4(),(),()3(),()2(;),()1(.422y
y y y x x x
x x x
y y dx
y x f dy dx y x f dy dx
y x f dy dy
y x f dx dy
y x f dx dy y x f dx dy y x f dx dy y x f dx dx y x f dy π;交换积分次序:
所围成的区域。
及是由其中为圆域其中分根据对称性计算二重积12,,)()2(;
,)1(:
.522222===+=≤+-⎰⎰⎰⎰y x y x y D d y x I R y x D d y R x D D
σσ
围成的平面区域
是由直线其中所围成的区域
及是由直线其中计算下列二重积分0,1,,)3(01,,4)2(;cos )1(:
.62226
60===-===-⎰⎰⎰⎰⎰⎰x y x y D dxdy xy y y x x y D d y x dx x x dy D
D y σππ
⎰⎰⎰⎰⎰⎰≤≤≤≤=≤≤≤≤---D y x
D
y D
D dxdy e D dxdy e y x D d x y 1}
y 1,0x 0y)(x,{,)3()1,0()1,1(),0,0(,)2(10,11,)1(.7},max{2222
其中区域;为顶点的三角形围成的和是其中所确定的区域;
是由其中计算下列二重积分:
σ
所围成的公共部分
与是由其中区域;坐标系中的二重积分:
将下列二重积分化为极)0(,),()3(),()2(;)()1(.82222210
022202>≤+≤++⎰⎰⎰⎰⎰⎰-a ay y x ax y x D d y x f dy y x f dx dy y x f dx D x x x x
σ
16
,4)3(,0,41arctan )2(4,sin )1(.9222222222222≤+-+==≤+≤≤+≤+⎰⎰⎰⎰⎰⎰D
D
D
y x D dxdy y x x y y y x D dxdy x y y x D d y x 为其中域象限内的区域
所围成的第一直线为圆环,其中;
为环域其中积分:
用极坐标计算下列二重ππσ
部分
所围成的位于第一象限由和圆周双纽线的面积
域求下列曲线所围平面区x y x y xy xy a ax y x x y x y x y x D 2,,2,1)3();
0(2))(2(;
2)(2)()1(.1032222222222====>=+=+-=+
立体的体积
内部围成的面的上面及圆柱面的下面,求位于抛物面所围立体的体积,求两圆柱面所围立体的体积;
与求由x y x xoy y x z R z x R y x h z y x z 2)3(;
)2()1.(11222222222222=++==+=+=+=
连续,求证:
在区间设]1,0[)(.12x f
⎰⎰≥-1
0)(10)(1dy e dx e y f x f
⎰⎰⎰-=b
a x a
b a x f dx x b x f dy y f dx 连续其中求证)(,))(()(:.13
1,1,)2(1,11)1(.142222222222≥+≤+++=+++--⎰⎰⎰⎰y x y x D d y x y x y x D d y
x y x D
D :其中象限内的区域及坐标轴所围成的第一是由圆周其中重积分:
利用极坐标计算下列二σσ。