考点3 简单的逻辑联结词、全称量词与存在量词
- 格式:doc
- 大小:189.00 KB
- 文档页数:1
简单的逻辑联结词、全称量词与存在量词
考点剖析:
1.了解逻辑联结词“或”“且”“非”的含义.
2.理解全称量词与存在量词的意义.
3.能正确地对含有一个量词的命题进行否定.
命题方向:全称命题与存在性命题的否定. 考查形式一般为选择题、填空题,多为容易题.
规律总结:
1.一个区别逻辑联结词“或”与日常生活中的“或”是有区别的,前者包括“或此、或彼、或兼”三种情形,后者仅表示“或此、或彼”两种情形.有的含有“且”“或”“非”联结词的命题,从字面上看不一定有“且”“或”“非”等字样,这就需要我们掌握一些词语、符号或式子与逻辑联结词“且”“或”“非”的关系.如“并且”的含义为“且”;“或者”、“≤”的含义为“或”;“不是”、“∉”的含义为“非”.
2.两个防范一是混淆命题的否定与否命题的概念导致失误,⌝p指的是命题的否定,只需否定结论.二是否定时,有关的否定词否定不当.
知识梳理
1.简单的逻辑联结词
(1)逻辑联结词
命题中的“且”、“或”、“非”叫做逻辑联结词.
(2)命题p∧q,p∨q,⌝p的真假判断
p q p∧q p∨q ⌝p
真真真真假
真假假真假
假真假真真
假假假假真
2.全称量词与存在量词
(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.
(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某。
考点三简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1) 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联接词.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作¬p,读作“非p”或“p的否定”.2.复合命题及其真假判断(1) 复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题.(2) 复合命题p∧q,p∨q,非p以及其真假判断:简记为:p∧q中p、q有假则假,同真则真;p∨q有真为真,同假则假;p与¬p必定是一真一假.3. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为∃x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.4. 含有一个量词的命题的否定 "x ∈M ,p (x )典例剖析题型一 含有一个量词的命题的否定例1 命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数变式训练 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :任意x ∈A,2x ∈B ,则( )A .Øp :任意x ∈A,2x ∉B B .Øp :任意x ∉A,2x ∉BC .Øp :存在x ∉A,2x ∈BD .Øp :存在x ∈A,2x ∉B题型二 复合命题真假判断例2 下列命题中的假命题是( )A .存在x ∈R ,sin x =52B .存在x ∈R ,log 2x =1C .任意x ∈R ,(12)x >0 D .任意x ∈R ,x 2≥0 变式训练 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .Øp ∧ØqC .Øp ∧qD .p ∧Øq题型三 由命题真假求参数范围例3 命题“存在x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围为________. 变式训练 已知命题p :“任意x ∈[1,2],x 2-a ≥0”,命题q :“存在x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.当堂练习1. 命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,使得20x <B .不存在x ∈R ,使得20x <C .存在0x ∈R ,都有200x ≥D .存在0x ∈R ,都有200x <2.若p,q是两个简单命题,且“p或q”是假命题,则必有()A.p真q真B.p真q假C.p假q假D.p假q真3.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.¬p或q B.p且q C.¬p且¬q D.¬p或¬q4.已知p:2+2=5,q:3>2,则下列判断正确的是()A.“p或q”为假,“¬q”为假B.“p或q”为真,“¬q”为假C.“p且q”为假,“¬p”为假D.“p且q”为真,“p或q”为假5.已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是.课后作业一、选择题1.命题“对任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>02.下列命题中正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,x2+x-1<0,则¬p:∃x∈R,x2+x-1≥03.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q4.已知命题p:∃x0∈R,x20+2x0+2≤0,则¬p为()A.∃x0∈R,x20+2x0+2>0 B.∃x0∈R,x20+2x0+2<0C.∀x∈R,x2+2x+2≤0 D.∀x∈R,x2+2x+2>05.对于下述两个命题p:对角线互相垂直的四边形是菱形;q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“¬p”中真命题的个数为()A.0 B.1 C.2 D.36.下列命题中的假命题是()A. ∀x∈R,2x-1>0B. ∀x∈N*,(x-1)2>0C. ∃x∈R,lg x<1D. ∃x∈R,tan x=2 7.若命题“∃x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)8.已知命题p:∀x∈R,2x2-2x+1≤0,命题q:∃x∈R,使sin x+cos x=2,则下列判断:①p且q是真命题;②p或q是真命题;③q是假命题;④非p是真命题其中正确的是()A.①④B.②③C.③④D.②④二、填空题9.命题“$x∈R,|x|≤0”的否定是“________________”.10.若命题“∃x∈R使x2+2x+m≤0”是假命题,则m的取值范围是_____________.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是________.12.命题“任意两个等边三角形都相似”的否定为___________________.13.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.。
§1.3简单的逻辑联结词、全称量词与存在量词考情考向分析逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为填空题,低档难度.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断2.全称量词和存在量词(1)全称量词:“所有”、“任意一个”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含有一个量词的命题的否定知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.(√)(4)“全等三角形的面积相等”是存在性命题.(×)(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)题组二教材改编2.[P13习题T3]已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为________.答案 2解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.[P18习题T4]命题“正方形都是矩形”的否定是_________________________.答案存在一个正方形,这个正方形不是矩形题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的________条件.答案充分不必要解析由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p 为假,故“綈p 为真”是“p ∧q 为假”的充分不必要条件. 5.下列命题中的假命题是________.(填序号) ①∃x ∈R ,lg x =1; ②∃x ∈R ,sin x =0; ③∀x ∈R ,x 3>0; ④∀x ∈R ,2x >0. 答案 ③解析 当x =10时,lg 10=1,则①为真命题; 当x =0时,sin 0=0,则②为真命题; 当x <0时,x 3<0,则③为假命题;由指数函数的性质知,∀x ∈R,2x >0,则④为真命题.6.已知命题p :∀x ∈R ,x 2-a ≥0;命题p :∃x ∈R ,x 2+2ax +2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围为__________. 答案 (-∞,-2]解析 由已知条件,知p 和q 均为真命题,由命题p 为真,得a ≤0,由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2.题型一 含有逻辑联结词的命题的真假判断1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中的真命题是________.(填序号) ①p ∨q ;②p ∧q ;③(綈p )∧(綈q );④p ∨(綈q ). 答案 ① 解析 如图所示,若a =A 1A →,b =AB →,c =B 1B →,则a ·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨q 为真命题.2.(2017·山东改编)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是________.(填序号)①p ∧q ;②p ∧(綈q );③(綈p )∧q ;④(綈p )∧(綈q ). 答案 ②解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0. ∴命题p 为真命题,∴綈p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4, 此时a 2<b 2,∴命题q 为假命题,∴綈q 为真命题.∴p ∧q 为假命题,p ∧(綈q )为真命题,(綈p )∧q 为假命题,(綈p )∧(綈q )为假命题. 3.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是________.(填序号) 答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤 (1)确定命题的构成形式. (2)判断其中命题p ,q 的真假.(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.题型二 含有一个量词的命题命题点1 全称命题、存在性命题的真假 典例 下列四个命题:①∃x ∈(0,+∞),⎝⎛⎭⎫12x <⎝⎛⎭⎫13x; ②∃x ∈(0,1),log 12x >13log x ;③∀x ∈(0,+∞),⎝⎛⎫12x>12log x ;④∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题序号为________. 答案 ②④解析 对于①,当x ∈(0,+∞)时,总有⎝⎛⎭⎫12x >⎝⎛⎭⎫13x成立,故①是假命题;对于②,当x =12时,有1=121log 2=131log 3>131log 2成立,故②是真命题;对于③,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =12log x 在(0,+∞)上的图象,可以判断③是假命题;对于④,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =13log x 在⎝⎛⎫0,13上的图象,可以判断④是真命题.命题点2 含有一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是________. 答案 ∃x ∈R ,⎝⎛⎭⎫13x ≤0解析 全称命题的否定是存在性命题,“>”的否定是“≤”. (2)(2017·苏州暑假测试)命题“∃x >1,x 2≥2”的否定是________. 答案 ∀x >1,x 2<2解析 根据存在性命题的否定规则得“∃x >1,x 2≥2”的否定是“∀x >1,x 2<2”. 思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在给定集合内找到一个x ,使p (x )成立. (2)对全称命题、存在性命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是________.(填序号) ①∃α,β∈R ,使cos(α+β)=cos α+cos β; ②∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数;③∃x ∈R ,使x 3+ax 2+bx +c =0(a ,b ,c ∈R 且为常数); ④∀a >0,函数f (x )=ln 2x +ln x -a 有零点.答案 ②解析 取α=π2,β=-π4,cos(α+β)=cos α+cos β,①正确;取φ=π2,函数f (x )=sin ⎝⎛⎭⎫2x +π2=cos 2x 是偶函数,②错误; 对于三次函数y =f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x ∈R ,使x 3+ax 2+bx +c =0,③正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +ln x =⎝⎛⎭⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,④正确.(2)已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为________. 答案 ∀x ∈R ,e x -x -1>0解析 根据全称命题与存在性命题的否定关系,可得綈p 为“∀x ∈R ,e x -x -1>0”. 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. 答案 [-12,-4]∪[4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题, 则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫12,+∞解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是________. 答案 (-1,3)解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.(2)已知p :∀x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫45,1解析 由2x <m (x 2+1),可得m >2xx 2+1,令g (x )=2xx 2+1,则g (x )在⎣⎡⎦⎤14,12上单调递增, 故g (x )≤g ⎝⎛⎭⎫12=45,故当p 为真时,m >45; 函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2,令f (x )=0,得2x =2-m -1, 若f (x )存在零点,则2-m -1>0,解得m <1, 故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝⎛⎭⎫45,1.常用逻辑用语考点分析 有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系. 一、命题的真假判断典例1 (1)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的________条件. 答案 必要不充分解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是________.(填序号)①p ∧q ;②(綈p )∧q ;③p ∧(綈q );④(綈p )∧(綈q ). 答案 ②解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝⎛⎭⎫13=19-⎝⎛⎭⎫132=0, 所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题. 二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的________条件. 答案 必要不充分解析 若A =B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1,得A =-B .(2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的________条件. 答案 充要解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|2=2.当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件. 三、求参数的取值范围典例3 (1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x ∈R ,x 2+4x +a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________. 答案 [e,4]解析 命题“p ∧q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈[e,4].(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________. 答案 (-∞,0]解析 ∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2 x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意,知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0.1.已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是________.(填序号)①p ∧q ;②(綈p )∧(綈q );③(綈p )∧q ;④p ∧(綈q ). 答案 ④解析 因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x >0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之,当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题.则p ∧q ,綈p 为假命题,綈q 为真命题,(綈p )∧(綈q ),(綈p )∧q 为假命题,p ∧(綈q )为真命题.2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是________.(填序号) ①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真. 答案 ③解析 函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,故命题q 为假命题,故p ∧q 为假. 3.下列命题中为假命题的是________.(填序号) ①∀x ∈⎝⎛⎭⎫0,π2,x >sin x ; ②∃x ∈R ,sin x +cos x =2; ③∀x ∈R,3x >0; ④∃x ∈R ,lg x =0. 答案 ②解析 对于①,令f (x )=x -sin x ,则f ′(x )=1-cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0.从而f (x )在⎝⎛⎭⎫0,π2上是增函数,则f (x )>f (0)=0,即x >sin x ,故①正确;对于②,由sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<2知,不存在x ∈R ,使得sin x +cos x =2,故②错误;对于③,易知3x >0,故③正确;对于④,由lg 1=0知,④正确. 4.下列命题的否定为假命题的是________.(填序号) ①∀x ∈R ,-x 2+x -1<0; ②∀x ∈R ,|x |>x ;③∀x ,y ∈Z ,2x -5y ≠12; ④∀x ∈R ,sin 2x +sin x +1=0. 答案 ①解析 命题的否定为假命题亦即原命题为真命题,只有①为真命题.5.命题p :∀x ∈R ,sin x <1;命题q :∃x ∈R ,cos x ≤-1,则下列为真命题的是________.(填序号) ①p ∧q;②(綈p )∧q ;③p ∨(綈q ); ④(綈p )∧(綈q ).答案 ②解析 p 是假命题,q 是真命题,所以②正确.6.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =p +q 是a n +a m =a p +a q 的充分不必要条件(m ,n ,p ,q ∈N *).则下列为真命题的是______.(填序号) ①(綈p )∧(綈q ); ②(綈p )∨(綈q );③p ∨(綈q );④p ∧q .答案 ②解析 当a =1.1,x =2时,a x =1.12=1.21,log a x =log 1.12>log 1.11.21=2,此时,a x <log a x ,故p 为假命题.命题q ,由等差数列的性质可知,当m +n =p +q 时,a n +a m =a p +a q 成立, 当公差d =0时,由a m +a n =a p +a q 不能推出m +n =p +q 成立,故q 是真命题.故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨(綈q )为真命题.7.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(綈q )∧p ”为真,则x 的取值范围是________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞).8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是________. 答案 (-∞,0)∪(4,+∞)解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以綈p :∃x ∈R ,ax 2+ax +1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 9.(2017·江苏南通中学月考)已知c >0,设命题p :函数y =c x 为减函数;命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围是________.答案 ⎝⎛⎦⎤0,12∪[1,+∞) 解析 若命题p :函数y =c x 为减函数为真命题,则0<c <1.当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x≥2(当且仅当x =1时取等号), 若命题q 为真命题,则1c <2,结合c >0可得c >12. ∵“p ∨q ”为真命题,“p ∧q ”为假命题,故p 与q 一真一假.当p 真q 假时,0<c ≤12; 当p 假q 真时,c ≥1.故c 的取值范围是为⎝⎛⎦⎤0,12∪[1,+∞). 10.已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2.其中真命题的个数为________.答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题;对∀x ∈R ,x 2+1≠0,∴③为假命题;4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故真命题的个数为0.12.已知命题p :∃x ∈R ,(m +1)·(x 2+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.答案 (-∞,-2]∪(-1,+∞)解析 由命题p :∃x ∈R ,(m +1)(x 2+1)≤0,可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.13.已知函数f (x )=x 2-2x +3,g (x )=log 2x +m ,对任意的x 1,x 2∈[1,4]有f (x 1)>g (x 2)恒成立,则实数m 的取值范围是________________.答案 (-∞,0)解析 f (x )=x 2-2x +3=(x -1)2+2,当x ∈[1,4]时,f (x )min =f (1)=2,g (x )max =g (4)=2+m ,则f (x )min >g (x )max ,即2>2+m ,解得m <0,故实数m 的取值范围是(-∞,0).14.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③.15.已知命题p :∃x ∈R ,e x -mx =0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是________.答案 [0,2]解析 若p ∨(綈q )为假命题,则p 假q 真.由e x-mx =0,可得m =e x x ,x ≠0, 设f (x )=e x x,x ≠0,则 f ′(x )=x e x -e x x 2=(x -1)e xx 2, 当x >1时,f ′(x )>0,函数f (x )=e x x在(1,+∞)上是单调增函数;当0<x <1或x <0时,f ′(x )<0,函数f (x )=e x x在(0,1)和(-∞,0)上是单调减函数,所以当x =1时,函数取得极小值f (1)=e ,所以函数f (x )=e x x的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e. 当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2). (1)若∃x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)[3,+∞) (2)(1,3]解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为[3,+∞).(2)因为a >1,所以g (x )在[2,+∞)上单调递,即g (x )≥a 2.又当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].。
第3讲简单的逻辑联结词、全称量词与存在量词1.命题p∧q,p∨q,非p的真假判断p q p∧q p∨q非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词量词名词常见量词表示符号全称量词所有、一切、任意、全部、每一个、任给等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃3.全称命题和特称命题命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)4.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M,非p(x)1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧q C.(非p)∧(非q)D.p∨(非q)2.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧(非q)B.(非p)∧q C.(非p)∧(非q)D.p∧q3.(2015·浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n04.(2015·山东)若“∀x∈0,π4,tan x≤m”是真命题,则实数m的最小值为________.5.(教材改编)给出下列命题:①∀x∈N,x3>x2;②所有可以被5整除的整数,末位数字都是0;③∃x0∈R,x20-x0+1≤0;④存在一个四边形,它的对角线互相垂直.则以上命题的否定中,真命题的序号为________.题型一含有逻辑联结词的命题的真假判断例1(1)已知命题p:m,n为直线,α为平面,若m∥n,n⊂α,则m∥α,命题q:若a>b,则ac>bc,则下列命题为真命题的是()A.p∨q B.非p∨q C.非p∧q D.p∧q(2)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(非q);④(非p)∨q中,真命题是()A.①③B.①④C.②③D.②④(1)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.(非p)∧(非q)C.(非p)∧q D.p∧(非q)},命题q:关于x的不等(2)若命题p:关于x的不等式ax+b>0的解集是{x|x>-ba式(x-a)(x-b)<0的解集是{x|a<x<b},则在命题“p∧q”、“p∨q”、“非p”、“非q”中,是真命题的有________.题型二含有一个量词的命题命题点1全称命题、特称命题的真假例2(1)下列命题中,为真命题的是() A.∀x∈R,x2>0B.∀x∈R,-1<sin x<1 C.∃x0∈R,02x<0D.∃x0∈R,tan x0=2(2)下列四个命题p1:∃x0∈(0,+∞)xx;p2:∃x0∈(0,1),log12x0>log13x0;p3:∀x∈(0,+∞)>log12x;p4:∀x<log13x.其中真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4命题点2含一个量词的命题的否定例3(1)命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1(2)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则非p为:______________.(1)下列命题中的真命题是()A.∃x∈R,使得sin x+cos x=32B.∀x∈(0,+∞),e x>x+1 C.∃x∈(-∞,0),2x<3x D.∀x∈(0,π),sin x>cos x(2)(2015·课标全国Ⅰ)设命题p:∃n∈N,n2>2n,则非p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n1.常用逻辑用语及其应用一、命题的真假判断典例1已知命题p:∃x∈R,x2+1<2x;命题q:若mx2-mx-1<0恒成立,则-4<m<0,那么()A.“非p”是假命题B.q是真命题C.“p或q”为假命题D.“p且q”为真命题二、利用逻辑推理解决实际问题典例2(1)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”时,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.[失误与防范]1.p∨q为真命题,只需p、q有一个为真即可;p∧q为真命题,必须p、q同时为真.2.两种形式命题的否定p或q的否定:非p且非q;p且q的否定:非p或非q.3.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.。
【考点剖析】1.命题方向预测:全称命题、特称命题的否定、真假的判断及逻辑联结词是高考的热点,常与其他知识相结合命题.题型一般为选择题,属容易题.相关内容往往与充要条件等轮番出现在高考题中,有时与相关内容同时考查.2.课本结论总结:一个关系逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.两类否定1.含有一个量词的命题的否定(1)全称命题的否定是特称命题全称命题p:x∈M,p(x),它的否定¬p:x0∈M,¬p(x0).(2)特称命题的否定是全称命题特称命题p:x0∈M,p(x0),它的否定¬p:x∈M,¬p(x).2.复合命题的否定(1) ¬ (p∧q) (¬p)∨(¬q);(2) ¬ (p∨q) (¬p)∧(¬q).三条规律(1)对于“p∧q”命题:有假则假;(2)对“p∨q”命题:有真则真;(3)对“¬p”命题:与“p”命题真假相反.3.名师二级结论:(1)命题的否定形式:(2)复合命题的否定(1) ¬ (p∧q) (¬p)∨(¬q);(2) ¬ (p∨q) (¬p)∧(¬q).4.考点交汇展示:(1)全称与特称与函数交汇例1若“”是真命题,则实数的最小值为.【答案】1(2)全称与特称与不等式交汇例2【2016高考浙江】命题“,使得”的否定形式是()A.,使得B.,使得C.,使得D.,使得【答案】D【解析】的否定是,的否定是,的否定是.故选D.【考点分类】热点1简单的逻辑联结词1.【2017山东,理3】已知命题p:;命题q:若a>b,则,下列命题为真命题的是(A)(B)(C)(D)【答案】B2.设是非零向量,已知命题P:若,,则;命题q:若,则,则下列命题中真命题是()A.B.C.D.【答案】A【解析】若,则,故,故命题P是假命题;若,则,故命题q是真命题,由复合命题真假的判断知是真命题;故选A.3.已知命题在命题①中,真命题是()A①③ B.①④ C.②③ D.②④【答案】C【解析】当时,两边乘以可得,所以命题为真命题,当时,因为,所以命题为假命题,则为真命题,所以根据真值表可得②③为真命题,故选C.【方法规律】1.“p∨q”、“p∧q”、“¬q”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∨q”、“p∧q”、“¬q”形式命题的真假.2.正确理解逻辑联结词“或”、“且”、“非”的含义是关键,解题时应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③判断复合命题的真假.【解题技巧】1.判断含有含有逻辑联结词的命题的真假,一定要先确定命题的形式,再判断简单命题的真假,最后按真值表进行.2.真值表可记为:有真“或”为真,有假“且”为假.【易错点睛】1.已知命题,写出复合命“p∨q”,“ p∧q”时,一定要注意所写命题要符合真值表.2.准确理解逻辑联结词“或”的含义:“p∨q”为真命题时,包括三种情形:p真q假,p假q 真,p真q真.如“或”包括:“或”,“或”,“或”三种情况.热点2 全称量词与存在量词1.【2018届广西钦州市高三上学期第一次】命题,则的否定是()A. ,则B. ,则C. ,则D. ,则【答案】D2.命题“且的否定形式是()A. 且B.或C. 且D. 或【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.3.【2018届衡水金卷全国高三大联考】已知命题:,,则命题为()A. ,B. ,C. ,D.,【答案】D【方法规律】全(特)称命题的否定与命题的否定有着一定的区别,全称命题的否定是将全称量词改为存在量词,并把结论否定;特称命题的否定是将存在量词改为全称量词,并把结论否定;而命题的否定是直接否定其结论.【解题技巧】含有一个量词的命题的否定:全称命题;它的否定,它是一个特称命题.特称命题;它的否定,它是一个全称命题.【易错点睛】1.注意对全称命题的否定与特称命题的否定的区别,全称命题的否定是特称命题,而特称命题的否定是全称命题.2.“否命题”与“命题的否定”不是同一概念,“否命题”是对原命题“若p则q”既要否定条件,又要否定其结论,其为“若p则q”;而“命题的否定”即非p,只是否定其结论,如命题“若p则q”的否定命题为:“若p则q”.热点3 简单命题、全称命题、特称命题真假的判断1.【2018届河北省邢台市高三上学期第一次】已知函数,给出下列两个命题:命题,.命题若对恒成立,则.那么,下列命题为真命题的是()A. B.C.D. 【答案】B【解析】设函数当时,在。
1.3简单的逻辑联结词、全称量词与存在量词1.逻辑联结词命题中的“或”“且”“非”称为____________________.2.全称量词“所有的”“任意一个”“每一个”等短语在逻辑中通常叫做____________,并用符号“________”表示.含有全称量词的命题称为____________,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).3.存在量词“存在一个”“至少有一个”等短语在逻辑中通常叫做______________,并用符号“________”表示.含有存在量词的命题称为______________,特称命题“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).注:特称命题也称存在性命题.4.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,p(x0)因此,全称命题的否定是________命题;特称命题的否定是________命题.5.命题p∧q,p∨q,p的真假判断(真值表)p q p∧q p∨q p真真①②③真假④⑤⑥假真⑦⑧⑨假假○10⑪⑫注:“p∧q”“p∨q”“p”统称为复合命题,构成复合命题的p命题,q命题称为简单命题.自查自纠1.逻辑联结词2.全称量词∀全称命题3.存在量词∃特称命题4.∃x 0∈M,p(x0)∀x∈M,p(x)特称全称5.①真②真③假④假⑤真⑥假⑦假⑧真⑨真○10假⑪假⑫真(2015·全国卷Ⅰ)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解:因为特称命题的否定是全称命题,所以p :∀n ∈N ,n 2≤2n .故选C . 下列命题中的假命题是( )A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1 D .∃x ∈R ,tan x =2 解:对于B 选项,x =1时,(x -1)2=0 .故选B .(2017·山东)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2,下列命题为真命题的是( ) A .p ∧q B .p ∧q C .p ∧q D .p ∧q解:由x >0时x +1>1,知p 是真命题,由-1>-2,(-1)2<(-2)2可知q 是假命题,即p ,q 均是真命题.故选B .命题“∀x ∈R ,|x -2|+|x -4|>3”的否定是_______________________________.解:由定义知命题的否定为“∃x 0∈R ,|x 0-2|+|x 0-4|≤3”.故填∃x 0∈R ,|x 0-2|+|x 0-4|≤3.(2015·山东)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.解:根据题意,m ≥(tan x )max ,而y =tan x 在⎣⎡⎦⎤0,π4上单调递增,有(tan x )max =tan π4=1,所以m ≥1,m 的最小值为1.故填1.类型一 含有逻辑联结词的命题及其真假判断(1)设命题p :若x ,y ∈R ,x =y ,则xy =1;命题q :若函数f (x )=e x ,则对任意x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0成立.则在下列命题中,真命题是( ) ①p ∧q ;②p ∨q ;③p ∧(q );④(p )∨q .A .①③B .①④C .②③D .②④(2)已知命题p :∀x ∈N *,⎝⎛⎭⎫12x ≥⎝⎛⎭⎫13x ;命题q :∃x 0∈N *,2x 0+21-x 0=22,则下列命题中为真命题的是( ) A .p ∧qB .(p )∧qC .p ∧(q )D .(p )∧(q )解:(1)当x =y =0时,xy无意义,故命题p 为假命题;由于函数f (x )单调递增,所以对任意x 1≠x 2,x 1-x 2与f (x 1)-f (x 2)同号,所以一定有f (x 1)-f (x 2)x 1-x 2>0成立,所以命题q 为真命题.显然只有命题②④为真命题.故选D .(2)根据幂函数的性质,可知命题p 为真命题;由2x0+21-x0=22,得22x0-22·2x0+2=0,解得2 x0=2,即x 0=12(或2x 0+21-x 0≥22 x 0·21-x 0=22,当且仅当2x 0=21-x0,即x 0=12时等号成立),命题q 为假命题.所以只有p ∧(q )为真命题.故选C .【点拨】判断含有逻辑联结词的命题真假的一般步骤:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”:一真即真,“且”:一假即假,“非”:真假相反作出判断.(1)已知命题p :∃x 0∈R ,x 0-2>lg x 0;命题q :∀x ∈R ,e x >1.则( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(q )是真命题 D .命题p ∨(q )是假命题(2)已知命题p :若b 2=ac (a ,b ,c ∈R ),则a ,b ,c 成等比数列;q :函数f (x )=cos ⎝⎛⎭⎫π2+x 是奇函数.则下列命题中为真命题的是( ) A .p ∨q B .p ∧q C .p ∨(q ) D .(p )∧(q )解:(1)取x 0=10,得x 0-2>lg x 0,所以命题p 是真命题;取x =-1,得e x <1,所以命题q 是假命题.则p ∨q 是真命题,p ∧q 是假命题,p ∧( q )是真命题,p ∨( q )是真命题.故选C .(2)对于命题p .若b 2=ac ,不妨取a =b =c =0,则a ,b ,c 不成等比数列,故命题p 为假命题;对于命题q ,函数f (x )=cos ⎝⎛⎭⎫π2+x =-sin x 是奇函数,故命题q 是真命题.显然只有p ∨q 是真命题.故选A .类型二 含有逻辑联结词的命题的综合问题(2015·金华联考)已知p :方程x 2+mx +1=0有两个不相等的负实数根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若“p ∨q ”为真命题,“p ∧q ”为假命题,则实数m 的取值范围是________.解:p 为真命题,有⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0, 解得m >2.q 为真命题,有Δ=[4(m -2)]2-4×4×1<0,解得1<m <3. 由“p ∨q ”为真命题,“p ∧q ”为假命题,知p 与q 一真一假. 当p 真q 假时,由⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3, 得m ≥3;当p 假q 真时,由⎩⎪⎨⎪⎧m ≤2,1<m <3, 得1<m ≤2.综上,实数m 的取值范围是(1,2]∪[3,+∞). 故填(1,2]∪[3,+∞).【点拨】由“p 或q ”为真,“p 且q ”为假判断出p 和q 一真一假后,再根据命题与集合之间的对应关系求m 的范围.逻辑联结词与集合的运算具有一致性,逻辑联结词中“且”“或”“非”恰好分别对应集合运算的“交”“并”“补”.已知命题p :在x ∈[1,2]时,不等式x 2+ax -2>0恒成立;命题q :函数f (x )=log 13(x 2-2ax +3a )是区间[1,+∞)上的减函数.若命题“p ∨q ”是真命题,求实数a 的取值范围. 解:因为x ∈[1,2]时,不等式x 2+ax -2>0恒成立,所以a >2-x 2x =2x -x 在x ∈[1,2]时恒成立,令g (x )=2x -x ,则g (x )在[1,2]上是减函数,所以g (x )max =g (1)=1,所以a >1.即若命题p 真,则a >1.又因为函数f (x )=log 13(x 2-2ax +3a )是区间[1,+∞)上的减函数,所以u (x )=x 2-2ax +3a 是[1,+∞)上的增函数,且u (x )>0在[1,+∞)上恒成立,所以⎩⎪⎨⎪⎧a ≤1,u (1)>0,所以-1<a ≤1,即若命题q 真,则-1<a ≤1.综上知,若命题“p ∨q ”是真命题,则a >-1.类型三 全称命题与特称命题(1)已知命题p :∀x >0,总有(x +1)e x >1,则 p 为( ) A .∃x 0≤0,使得(x 0+1)e x0≤1 B .∃x 0>0,使得(x 0+1)e x 0≤1 C .∀x >0,总有(x +1)e x ≤1 D .∀x ≤0,总有(x +1)e x ≤1解:全称命题的否定是特称命题.故选B .(2)已知“命题p :∃x 0∈R ,ax 20+2x 0+1<0”为真命题,则实数a 的取值范围是( ) A .[0,1) B .(-∞,1) C .[1,+∞) D .(-∞,1]解法一:当a =0时,2x +1<0,可得x <-12,此时命题p 为真;当a ≠0时,要使命题p 为真,只要Δ=4-4a >0,即a <1且a ≠0即可.综上可知,a <1.解法二:命题p 的否定是“∀x ∈R ,ax 2+2x +1≥0”.当a =0时,显然命题 p 为假;当a ≠0时,命题 p 为真的充要条件是a >0且Δ=4-4a ≤0,即a ≥1.故 p 为真时,a 的取值范围为A =[1,+∞),故p 为真时,a 的取值范围为∁R A =(-∞,1).故选B .【点拨】全称命题的否定是特称命题,特称命题的否定是全称命题. 命题 否定 p p p ∨q ( p )∧( q ) p ∧q ( p )∨( q ) ∀x ∈M ,p (x ) ∃x 0∈M , p (x 0) ∃x 0∈M ,p (x 0)∀x ∈M , p (x )(1)设命题p :∀平面向量a 和b ,|a -b |<|a |+|b |,则 p 为( ) A .∀平面向量a 和b ,|a -b |≥|a |+|b | B .∃平面向量a 0和b 0,|a 0-b 0|<|a 0|+|b 0| C .∃平面向量a 0和b 0,|a 0-b 0|>|a 0|+|b 0| D .∃平面向量a 0和b 0,|a 0-b 0|≥|a 0|+|b 0|(2)命题“∃x 0∈R ,a sin x 0+cos x 0≥2”为假命题,则实数a 的取值范围是________. 解:(1)改全称量词为存在量词并且否定结论.故选D .(2)原命题为假,即命题“∀x ∈R ,a sin x +cos x <2”为真命题,即a 2+1<2,解得-3<a <3,即实数a 的取值范围是(-3,3).故填(-3,3).1.含有逻辑联结词命题真假的判断判断一个含有逻辑联结词命题的真假,应先对该命题进行分解,判断出构成它的简单命题的真假,再根据真值表进行判断.2.全称命题与特称命题真假的判断(1)要判断全称命题是真命题,需要对集合M 中每个元素x ,证明p (x )成立;如果在集合M 中找到一个元素x 0,使得p (x 0)不成立,那么这个全称命题就是假命题.(2)要判定一个特称命题是真命题,只要在限定的集合M 中,至少能找一个x =x 0,使p (x 0)成立即可;否则,这一特称命题就是假命题.3.在有些命题中,逻辑联结词“或”“且”“非”是以另一种形式出现的.如“x =±1”中含逻辑联结词“或”,“≥”表示“大于或等于”;“”表示“平行且等于”,“并且”的含义为“且”;“∉”表示“不属于”,“不是”的含义为“非”等.4.一些常用的正面叙述的词语及它们的否定词语表:正面词语 等于(=) 大于(>) 小于(<) 是 都是 否定词语 不等于(≠)不大于(≤)不小于(≥) 不是 不都是 正面词语 至多有一个 至少有一个 任意的 所有的 一定 否定词语至少有两个一个也没有某个某些不一定1.“a 和b 都不是偶数”的否定形式是( ) A .a 和b 至少有一个是偶数 B .a 和b 至多有一个是偶数 C .a 是偶数,b 不是偶数 D .a 和b 都是偶数解:“a 和b 都不是偶数”的否定形式是“a 和b 至少有一个是偶数”.故选A . 2.已知命题p :∀x ∈R ,sin x ≤1,则( ) A . p :∃x 0∈R ,sin x 0≥1 B . p :∀x ∈R ,sin x ≥1 C . p :∃x 0∈R ,sin x 0>1 D . p :∀x ∈R ,sin x >1解: p 是对p 的否定,故为∃x 0∈R ,sin x 0>1.故选C . 3.对于函数f (x )=sin x +cos x ,下列命题正确的是( ) A .∀x ∈R ,f (x )= 2 B .∃x 0∈R ,f (x 0)=2C .∀x ∈R ,f (x )> 2D .∃x 0∈R ,f (x 0)>2解:f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2].故选B .4.下列命题中,真命题是( ) A .∃x 0∈R ,e x0≤0 B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab =-1D .a >1,b >1是ab >1的充分条件解:此类题目多选用筛选法,因为e x >0对任意x ∈R 恒成立,所以A 选项错误;因为当x =3时23=8,32=9且8<9,所以选项B 错误;因为当a =b =0时a +b =0,而ab 无意义,所以选项C 错误.故选D .5.下列命题中,正确的是( )A .命题“∀x ∈R ,x 2-x ≤0”的否定是“∃x 0∈R ,x 20-x 0≥0”B .命题“p ∧q 为真”是命题“p ∨q 为真”的必要不充分条件C .“若am 2≤bm 2,则a ≤b ”的否命题为真D .若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4解:A 中否定不能有等号.B 中命题“p ∧q 为真”是命题“p ∨q 为真”的充分不必要条件.D 中概率应为1-π4.故选C . 6.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 0解:由于a >0,令函数y =12ax 2-bx =12a ⎝⎛⎭⎫x -b a 2-b 22a ,此时函数对应的开口向上,当x =b a 时,取得最小值-b 22a,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.故选C .7.已知命题p 1:函数y =2x -2-x 在R 上为增函数;p 2:函数y =x +1x 在(0,+∞)上为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:( p 1)∨p 2和q 4:p 1∧( p 2)中,是真命题的是________. 解:p 1是真命题,则 p 1为假命题;p 2是假命题,则 p 2为真命题, 所以q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题, 所以q 3:( p 1)∨p 2为假命题,q 4:p 1∧( p 2)为真命题. 所以真命题是q 1,q 4.故填q 1,q 4.8.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,使x 2+2ax +2-a =0,若命题“p 且q ”是真命题,则实数a 的取值范围是________.解:由题意知,p :a ≤1,q :a ≤-2或a ≥1,因为“p 且q ”为真命题,所以p ,q 均为真命题,所以a ≤-2或a =1.故填{a|a ≤-2或a =1}.9.分别写出由下列各组命题构成的“p ∨q ”“p ∧q ”“ p ”形式的新命题,并判断其真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分. 解:(1)p ∨q :2是4的约数或2是6的约数,真命题; p ∧q :2是4的约数且2是6的约数,真命题; p :2不是4的约数,假命题.(2)p ∨q :矩形的对角线相等或互相平分,真命题; p ∧q :矩形的对角线相等且互相平分,真命题;p :矩形的对角线不相等,假命题.10.指出下列命题中,哪些是全称命题,哪些是特称命题,写出它们的否定形式,并判断否定形式的真假. (1)若a >0且a ≠1,则对任意实数x ,a x >0; (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2; (3)∃T 0∈R ,使|sin(x +T 0)|=|sin x |; (4)∃x 0∈R ,使x 20+1<0.解:(1)全称命题,其否定形式为:若a >0且a ≠1,则∃x ∈R ,a x ≤0,显然该命题为假命题.(2)全称命题,其否定形式为:∃x 1,x 2∈R ,且x 1<x 2,使tan x 1≥tan x 2,该命题为真命题.例如取x 1=0,x 2=π,有x 1<x 2,但tan x 1=tan x 2=0;又当x 1=0,x 2=2π3时,有x 1<x 2,但tan0=0,tan 2π3=-3,所以tan x 1>tan x 2.(3)特称命题,其否定形式为:∀T ∈R ,|sin(x +T )|≠|sin x |,该命题是假命题.例如T 0=π时,有|sin(x +π)|=|sin x |.(4)特称命题,其否定形式为∀x ∈R ,x 2+1≥0.因为x ∈R 时,x 2≥0,所以x 2+1≥1>0,故为真命题. 11.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.求使p ∨q 为真,p ∧q 为假的实数m 的取值范围.解:由⎩⎪⎨⎪⎧Δ1=4m 2-4>0,x 1+x 2=-2m >0, 得m <-1,所以p :m <-1;由Δ2=4(m -2)2-4(-3m +10)<0,得-2<m <3, 所以q :-2<m <3.由p ∨q 为真,p ∧q 为假可知,命题p ,q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧m <-1,m ≥3或m ≤-2, 此时m ≤-2;当p 假q 真时,⎩⎪⎨⎪⎧m ≥-1,-2<m <3, 此时-1≤m <3.所以m 的取值范围是(-∞,-2]∪[-1,3).已知m ∈R ,命题p :对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立;命题q :存在x ∈[-1,1],使得m ≤ax 成立.(1)若p 为真命题,求m 的取值范围;(2)当a =1时,若p 且q 为假,p 或q 为真,求m 的取值范围.解:(1)因为对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立,所以(2x -2)min ≥m 2-3m ,即m 2-3m ≤-2,解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2]. (2)因为a =1,且存在x ∈[-1,1],使得m ≤ax 成立, 所以m ≤1.因此,命题q 为真时,m ≤1. 因为p 且q 为假,p 或q 为真,所以p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,由⎩⎪⎨⎪⎧1≤m ≤2,m >1, 得1<m ≤2;当p 假q 真时,由⎩⎪⎨⎪⎧m <1或m >2,m ≤1, 得m <1.综上所述,m 的取值范围为(-∞,1)∪(1,2].一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·北京)已知全集U =R ,集合A ={x |x <-2或x >2},则∁U A = ( ) A .(-2,2) B .(-∞,-2)∪(2,+∞) C .[-2,2] D .(-∞,-2]∪[2,+∞) 解:由已知可得,集合A 的补集∁U A =[-2,2].故选C .2.(2017·浙江)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q = ( ) A .(-1,2) B .(0,1) C .(-1,0) D .(1,2)解:根据集合的并集的定义,得P ∪Q =(-1,2).故选A .3.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B = ( ) A .{1} B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解:集合B ={x |-1<x <2,x ∈Z }={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.故选C .4.命题“∃m ∈[0,1],使得x +1x <2m ”的否定形式是 ( )A .∀m ∈[0,1],总有x +1x <2mB .∃m ∈[0,1],使得x +1x≥2mC .∃m ∈(-∞,0)∪(1,+∞),使得x +1x≥2mD .∀m ∈[0,1],总有x +1x ≥2m解:特称命题的否定是全称命题.故选D .5.已知全集U =R ,集合A =⎩⎨⎧⎭⎬⎫y |y =4x ,x >0,B ={y |y =2x ,x <1},则A ∩(∁R B )= ( )A .(0,2)B .[2,+∞)C .(-∞,0]D .(2,+∞) 解:因为集合A =⎩⎨⎧⎭⎬⎫y |y =4x ,x >0=(0,+∞),B ={y |y =2x ,x <1}=(0,2),所以∁R B =(-∞,0]∪[2,+∞),所以A ∩(∁R B )=[2,+∞).故选B .6.已知p :∅⊆{0},q :{1}∈{1,2},由它们构成的新命题“p ∧q ”“p ∨q ”“ p ”中,真命题有( ) A .0个 B .1个 C .2个 D .3个解:因为空集是任何集合的子集,{1}⊆{1,2},所以p 真q 假.所以“p ∨q ”为真,“p ∧q ”“ p ”为假.故选B .7.已知集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z 且32-x ∈Z ,则集合A 中的元素个数为 ( )A .2B .3C .4D .5解:因为32-x ∈Z 且x ∈Z ,所以2-x 的取值有-3,-1,1,3,x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.故选C .8.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:a -b >1,即a >b +1.因为a ,b 为正数,所以a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立.反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”的充分不必要条件.故选A .9.下列命题中:①“∃x 0∈R ,x 20-x 0+1≤0”的否定; ②“若x 2+x -6≥0,则x >2”的否命题; ③命题“若x 2-5x +6=0,则x =2”的逆否命题. 其中真命题的个数是 ( ) A .0个 B .1个 C .2个 D .3个 解:只有③不正确.故选C .10.(2017·浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件解:S 4+S 6-2S 5=a 5+a 6-2a 5=d ,所以为充要条件.故选C .11.短道速滑队进行冬奥会选拔赛(6人决出第一~六名),记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,( q )∧r 是真命题,则选拔赛的结果为( ) A .甲第一、乙第二、丙第三 B .甲第二、乙第一、丙第三 C .甲第一、乙第三、丙第二 D .甲第一、乙没得第二名、丙第三解:( q )∧r 是真命题意味着 q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名.故选D .12.已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是 ( ) A.⎣⎡⎭⎫14,+∞ B.⎝⎛⎦⎤-∞,14 C.⎣⎡⎭⎫12,+∞ D.⎝⎛⎦⎤-∞,-12 解:当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.故选A .二、填空题:本题共4小题,每小题5分,共20分. 13.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是________.解:把全称量词“∀”改为存在量词“∃”,并把结论加以否定.故填∃x 0∈[0,+∞),x 30+x 0<0. 14.已知集合A ={-1,2,3,6},B ={x |-2<x <3},则A ∩B 子集的个数为________.解:由交集的定义可得A ∩B ={-1,2}.因此A ∩B 的子集为∅,{-1},{2},{-1,2}.故填4. 15.已知集合A ={1,a ,5},B ={2,a 2+1}.若A ∩B 中有且只有一个元素,则实数a 的值为________. 解:若a 2+1=1,则a =0,A ∩B ={1};若a 2+1=5,则a =±2,当a =2时,A ∩B ={2,5},不合题意,舍去;当a =-2时,A ∩B ={5}; 若a 2+1=a ,则a 2-a +1=0无解. 所以a =0或a =-2.故填0或-2.16.如图所示的韦恩图中,A ,B 是非空集合,定义集合A ⊕B 为阴影部分所表示的集合.若A ={x |0≤x ≤2},B ={y |y =3x ,x >0},则A ⊕B =________.解:依据定义,A ⊕B 就是将A ∪B 除去A ∩B 后剩余的元素所构成的集合.B ={y |y >1},所以A ∪B =[0,+∞),A ∩B =(1,2],依据定义得A ⊕B ={x |0≤x ≤1或x >2}.故填{x|0≤x ≤1或x>2}.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知R 为全集,A ={x |log 12(3-x )≥-2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪5x +2≥1.(1)求A ∩B ;(2)求(∁R A )∩B 与(∁R A )∪B .解:(1)由log 12(3-x )≥log 124,得⎩⎪⎨⎪⎧3-x >0,3-x ≤4.即A ={x |-1≤x <3}.由5x +2≥1,得x -3x +2≤0, 即B ={x |-2<x ≤3}, 所以A ∩B ={x |-1≤x <3}. (2)因为∁R A ={x |x <-1或x ≥3},故(∁R A )∩B ={x |-2<x <-1或x =3},(∁R A )∪B =R .18.(12分)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},若A ∪B =A ,求a 的值.解:A ={1,2},因为A ∪B =A ,所以B ⊆A ,B ={x |[x -(a -1)](x -1)=0},所以a -1=1或2,即a =2或3. 19.(12分)已知集合A ={x ||x -a |≤2},B ={x |lg(x 2+6x +9)>0}. (1)求集合A 和∁R B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)因为|x -a |≤2⇔-2≤x -a ≤2⇔a -2≤x ≤a +2, 所以集合A ={x |a -2≤x ≤a +2}. 因为lg(x 2+6x +9)>0,所以x 2+6x +9>1, 所以x <-4或x >-2.所以集合B ={x |x <-4或x >-2}. 所以∁R B =[-4,-2].(2)由A ⊆B ,得2+a <-4或-2<a -2, 解得a <-6或a >0.所以a 的取值范围为{a |a <-6或a >0}.20.(12分)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[1,3],所以⎩⎪⎨⎪⎧m -2=1,m +2≥3, 得m =3. (2)∁R B ={x |x <m -2,或x >m +2},因为A ⊆∁R B ,所以m -2>3或m +2<-1,解得m >5或m <-3.所以实数m 的取值范围是(-∞,-3)∪(5,+∞).21.(12分)已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0.(1)求p 中对应x 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围.解:(1)因为x 2≤5x -4,所以x 2-5x +4≤0,即(x -1)(x -4)≤0,所以1≤x ≤4,即p 中对应x 的取值范围为[1,4].(2)设p 对应的集合为A ={x |1≤x ≤4}.由x 2-(a +2)x +2a ≤0,得(x -2)(x -a )≤0.当a =2时,不等式的解为x =2,对应的解集为B ={2};当a >2时,不等式的解为2≤x ≤a ,对应的解集为B ={x |2≤x ≤a };当a <2时,不等式的解为a ≤x ≤2,对应的解集为B ={x |a ≤x ≤2};若p 是q 的必要不充分条件,则B A ,当a =2时,满足条件;当a >2时,因为A ={x |1≤x ≤4},B ={x |2≤x ≤a },要使B A ,则满足2<a ≤4; 当a <2时,因为A ={x |1≤x ≤4},B ={x |a ≤x ≤2},要使B A ,则满足1≤a <2. 综上,实数a 的取值范围为{a |1≤a ≤4}.22.(12分)设a ∈R ,二次函数f (x )=ax 2-2x -2a .若f (x )>0的解集为A ,B ={x |1<x <3},A ∩B ≠∅,求实数a 的取值范围.解:由f (x )为二次函数知a ≠0,令f (x )=0解得其两根为x 1=1a-2+1a 2,x 2=1a +2+1a2. 由此可知x 1<0,x 2>0.(1)当a >0时,A ={x |x <x 1}∪{x |x >x 2}.A ∩B ≠∅的充要条件是x 2<3,即1a +2+1a 2<3,解得a >67. (2)当a <0时,A ={x |x 1<x <x 2}.A ∩B ≠∅的充要条件是x 2>1,即1a +2+1a2>1,解得a <-2. 综上,使A ∩B ≠∅成立的a 的取值范围为(-∞,-2)∪⎝⎛⎭⎫67,+∞.。
03 简单的逻辑联结词、全称量词与存在量词 知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题2.(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃”表示;含有存在量词的命题叫做特称命题.(3)1.若p ∧q 为真,则p ,q 同为真;若p ∧q 为假,则p ,q 至少有一个为假;若p ∨q 为假,则p ,q 同为假;若p ∨q 为真,则p ,q 至少有一个为真.2.“p ∧q ”的否定是“(非p )∨(非q )”;“p ∨q ”的否定是“(非p )∧(非q )”.题型一. 含有一个逻辑联结词命题的真假性例1. 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q )C .(非p )∧qD .p ∧(非q )解析: 根据指数函数的图象可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题.逐项检验可知只有p ∧(非q )为真命题.故选D.[答案] D判断含有一个逻辑联结词命题的真假性的步骤第一步:先判断命题p 与q 的真假性,从而得出非p 与非q 的真假性.第二步:根据“p ∧q ”与“p ∨q ”的真值表进行真假性的判断.变式1.设命题p :3≥2,q :函数f (x )=x +1x(x ∈R )的最小值为2,则下列命题为假命题的是( )A .p ∨qB .p ∨(非q )C .(非p )∨qD .p ∧(非q )解析:选C.命题p :3≥2是真命题,命题q 是假命题,∴(非p )∨q 为假命题,故选C.变式2.已知命题p :∀x ∈R ,2x <3x ,命题q :∃x ∈R ,x 2=2-x ,若命题(非p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:选D.∵非p :∃x ∈R ,2x ≥3x ,要使(非p )∧q 为真,∴非p 与q 同时为真.由2x ≥3x 得⎝⎛⎭⎫23x ≥1, ∴x ≤0,由x 2=2-x 得x 2+x -2=0,∴x =1或x =-2,又x ≤0,∴x =-2.变式3.设p :y =log a x (a >0,且a ≠1)在(0,+∞)上是减函数;q :曲线y =x 2+(2a -3)x +1与x 轴有两个不同的交点,若p ∨(非q )为假,则a 的范围为__________.解析:∵p ∨(非q )为假,∴p 假q 真.p 为假时,a >1,q 为真时,(2a -3)2-4>0,即a <12或a >52,∴a 的范围为(1,+∞)∩⎣⎡⎦⎤⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫52,+∞ =⎝⎛⎭⎫52,+∞. 答案:⎝⎛⎭⎫52,+∞ 题型二. 含有一个量词的命题的否定例2. 命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -1B .∀x ∉(0,+∞),ln x =x -1C .∃x 0∈(0,+∞),ln x 0≠x 0-1D .∃x 0∉(0,+∞),ln x 0=x 0-1解析: 由特称命题的否定为全称命题可知,所求命题的否定为全称命题,则所求命题的否定为∀x ∈(0,+∞),ln x ≠x -1,故选A.[答案] A(1)特称命题与全称命题否定的判断方法:“∃”“∀”相调换,否定结论得命题.对没有量词的要结合命题的含义加上量词,再进行否定;(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可.变式1.命题p :∃x 0∈R ,x 20+2x 0+2≤0的否定为( )A .非p :∃x 0∈R ,x 20+2x 0+2>0B .非p :∀x ∈R ,x 2+2x +2≤0C .非p :∀x ∈R ,x 2+2x +2>0D .非p :∃x 0∈R ,x 20+2x 0+2<0解析:选C.根据特称命题的否定形式知非p :∀x ∈R ,x 2+2x +2>0,故选C.变式2.设命题p :任意两个等腰三角形都相似,q :∃x 0∈R ,x 0+|x 0|+2=0,则下列结论正确的是 ( )A .p ∨q 为真命题B .(非p )∧q 为真命题C .p ∨(非q )为真命题D .(非p )∧(非q )为假命题解析:选C.∵p 假,非p 真;q 假,非q 真,∴p ∨q 为假,(非p )∧q 为假,p ∨(非q )为真,(非p )∧(非q )为真,故选C.题型三. 全称命题与特称命题真假性的应用例3. 已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]解析: 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2. [答案] A根据全称与特称命题的真假性求参数范围的步骤第一步:对两个简单命题进行真假性判断.第二步:根据p ∧q 为真,则p 真q 真,p ∧q 为假,则p与q 至少有一个为假,p ∨q 为真,则p 与q 至少有一个为真,p ∨q 为假,则p 假q 假. 第三步:根据p 、q 的真假性列出关于参数的关系式,从而求出参数的范围.变式1.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是真命题,则实数a 的取值范围为( )A .(-∞,-2]B .[-2,2]C .(-2,2)D .[2,+∞)解析:选 B.因为该命题的否定为:“∀x ∈R ,x 2+ax +1≥0”是真命题,则Δ=a 2-4×1×1≤0,解得-2≤a ≤2.故实数a 的取值范围是[-2,2].变式2.(名师原创)若“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”是真命题,则实数m 的范围为( ) A .[1,+∞) B .(-∞,1]C.⎝⎛⎦⎤-∞,12 D .⎣⎢⎡⎭⎪⎫32,+∞ 解析:选A.∵∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,12≤sin x ≤1. ∴“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”为真命题时,m ≥1,故选A. 【真题演练】1.【浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .2.【高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.3.【高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.4.【陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假【答案】B5.【重庆卷】已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .非p ∧非qC .非p ∧qD .p ∧非q【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题,所以p ∧非q 为真命题.6.【湖北卷】在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q【答案】A “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.。
考点03 逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.一、逻辑联结词1.常见的逻辑联结词:或、且、非∧,读作“p且q”;一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作p q∨,读作“p或q”;用联结词“或”把命题p和q联结起来,得到一个新命题,记作p q⌝,读作“非p”.对一个命题p的结论进行否定,得到一个新命题,记作p2.复合命题的真假判断“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:3.必记结论含有逻辑联结词的命题的真假判断:∧中一假则假,全真才真.(1)p q∨中一真则真,全假才假.(2)p q(3)p 与p ⌝真假性相反.注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.不能混淆这两者的概念. 二、全称命题与特称命题 1.全称量词和存在量词2.同一个全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活地选择.3.含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:考向一 判断复合命题的真假1.判断“p q ∧”、“p q ∨”形式复合命题真假的步骤: 第一步,确定复合命题的构成形式; 第二步,判断简单命题p 、q 的真假; 第三步,根据真值表作出判断.注意:一真“或”为真,一假“且”为假.2.不含逻辑联结词的复合命题,通过辨析命题中词语的含义和实际背景,弄清其构成形式. 3.当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假.典例1 设a 、b 、c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是 A .p q ∨B .p q ∧C .p q ⌝∧⌝()()D .p q ∨⌝()【答案】A【解析】取a =c =(1,0),b =(0,1)知,a ·b =0,b ·c =0,但a ·c ≠0,∴命题p 为假命题; ∵a ∥b ,b ∥c ,∴存在λ,μ∈R ,使a =λb ,b =μc , ∴a =λμc ,∴a ∥c ,∴命题q 是真命题.∴p ∨q 为真命题. 故选A.【解题技巧】1.辨别复合命题的构成形式时,应根据组成复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式.2.准确理解语义应注意抓住一些关键词.如“是…也是…”,“兼”,“不但…而且…”,“既…又…”,“要么…,要么…”,“不仅…还…”等.3.要注意数学中和生活中一些特殊表达方式和特殊关系式.如:a ≥3是a >3或a =3;xy =0是x =0或y =0;x 2+y 2=0是x =0且y =0.1.已知命题p :∀x ∈R,2x<3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是 A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )考向二 判断全称命题与特称命题的真假要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.典例2 下列命题中是假命题的是A .,,αβ∃∈R 使sin()sin sin αβαβ+=+B .ϕ∀∈R ,函数()sin(2)f x x ϕ=+都不是偶函数C .m ∃∈R,使243()(1)mm f x m x -+=-是幂函数,且在(0,)+∞上单调递减D .0a ∀>,函数2()ln ln f x x x a =+-有零点 【答案】B【名师点睛】全称命题与特称命题的真假判断在高考中出现时,常与数学中的其他知识点相结合,题型以选择题为主,难度一般不大.2.若命题22:421p x ax x a x ∀∈++≥-+R ,是真命题,则实数a 的取值范围是 A .(]2-∞,B .[2+)∞,C .(2,)-+∞D .(2,2)-考向三 含有一个量词的命题的否定一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.典例3 已知命题()31,,168p x x x ∀∈+∞+>:,则命题p 的否定为A .()31,,168p x x x ⌝∀∈+∞+≤: B .()31,,168p x x x ⌝∀∈+∞+<:C .()30001,,168p x x x ⌝∃∈+∞+≤: D .()30001,,168p x x x ⌝∃∈+∞+<:【答案】C【解析】全称命题的否定为特称命题,故其否定为()30001,,168p x x x ⌝∃∈+∞+≤:.故选C.3.命题“有些实数的绝对值是正数”的否定是 A .0x x ∀∈>R , B .000x x ∃∈>R ,C .0x x ∀∈≤R ,D .000x x ∃∈≤R ,1.设命题:,2ln 2xp x Q x ∃∈-<,则p ⌝为 A .,2ln 2xx Q x ∃∈-≥ B .,2ln 2xx Q x ∀∈-< C .,2ln 2x x Q x ∀∈-≥D .,2ln 2xx Q x ∀∈-=2.设集合2{|02},{|2}M x x N x x x =∈<≤=∈≥R R ,则 A .,x N x M ∀∈∈ B .,x M x N ∀∈∈ C .00,x N x M ∃∉∈D .00,x M x N ∃∈∉3.下列命题中的真命题是A .∃x ∈[0,π2],sin x +cos x ≥2B .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x C .∃x ∈R ,x 2+x =-1D .∀x ∈R ,x 2+2x >4x -34.已知命题p :“,a b a b ∀>>”,命题q :“000,20x x ∃<>”,则下列为真命题的是 A .p q ∧ B .p q ⌝∧⌝ C .p q ∨D .p q ∨⌝5.已知函数()3f x x =和()12xg x -=,命题()():,p f x g x 在定义域内都是增函数;命题:q 函数()()y f x g x =-的零点所在的区间为(0,2),则在命题:,,p q p q p q ∧∨⌝∧中,真命题的个数为 A .0 B .1 C .2D .36.下面四个命题:1p :命题“2,2n n n ∀∈>N ”的否定是“0200,2n n n ∃∉≤N ”; 2p :向量()(),1,1,m n ==-a b ,则m n =是⊥a b 的充分且必要条件;3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”;4p :若“p q ∧”是假命题,则p 是假命题.其中为真命题的是 A .12,p pB .23,p pC .24,p pD .13,p p7.命题“x ∃∈R ,()2110x m x --+<”为假命题,则实数m 的取值范围为__________.8.已知命题:P x ∀∈R , ()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022xa ≤,若命题P Q∧为真命题,则实数a 的取值范围为__________.1.(2017山东文科)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 2.(2015湖北文科)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-1.【答案】B【解析】由20=30知p 为假命题;令h (x )=x 3+x 2-1,则h (0)=-1<0,h (1)=1>0,∴方程x 3+x 2-1=0在(-1,1)内有解,∴q 为真命题,∴(¬p )∧q 为真命题,故选B .3.【答案】C【解析】由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.1.【答案】C【解析】由含有一个量词的命题的否定的概念可得p ⌝:,2ln 2xx Q x ∀∈-≥,故选C .【名师点睛】(1)该题考查的是有关含有一个量词的命题的否定形式,在解题的过程中,需要明确特称命题的否定是全称命题,即可得结果.(2)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定. 2.【答案】B【解析】由22x x ≥得02x ≤≤,即}{|02N x x =∈≤≤R ,所以M N ⊆,根据全称命题的特点和子集的定义,得出正确选项为B .【名师点睛】本题主要考查了集合之间的包含关系以及全称命题和特称命题的特征等,属于易错题.错误的主要原因是没有弄懂全称命题和特称命题的定义.解本题时,先由不等式22x x ≥求出x 的范围,写成集合即为N ,再得出集合M ,N 之间的关系,最后得到正确的选项. 3.【答案】D4.【答案】C【解析】对于命题p ,当a =0,b =−1时,0>−1,但是|a |=0,|b |=1,|a |<|b |,所以命题p 是假命题.对于命题q ,000,20x x ∃<>,如1011,2=0.2x -=->所以命题q 是真命题. 所以p q ∨为真命题. 故答案为C.【名师点睛】(1)本题主要考查全称命题和特称命题的真假,考查复合命题的真假判断,意在考查学生对这些基础知识的能力.(2)复合命题的真假口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真. (3)求解此类问题时,先判断命题p 和q 的真假,再判断选项的真假.【名师点睛】首先判断简单命题,p q 的真假,再由复合命题的真值表可判断复合命题的真假. 复合命题的真值表:熟练记忆和掌握上述真值表便可顺利求解. 6.【答案】B【解析】对于1p :命题“2,2n n n ∀∈>N ”的否定是“0200,2n n n ∃∈≤N ”,所以1p 是假命题; 对于2p :向量()(),1,1,m n ==-a b ,所以⊥a b 等价于m −n =0即m =n ,则m n =是⊥a b 的充分且必要条件,所以2p 是真命题;对于3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”,所以3p 是真命题;对于4p :若“p q ∧”是假命题,则p 或q 是假命题,所以4p 是假命题. 故答案为B.【名师点睛】本题主要考查全称命题的否定、充要条件、逆否命题和“且”命题,利用每一个命题涉及的知识点判断每一个命题的真假得解,意在考查学生对这些基础知识的掌握能力. 7.【答案】[]1,3-【解析】命题“x ∃∈R ,()2110x m x --+<”是假命题,则命题的否定是:“x ∀∈R ,()2110x m x --+≥”是真命题,则()2140m ∆=--≤,解得13m -≤≤,故答案为[]1,3-.【名师点睛】应用全称命题与特称命题求参数范围的常见题型:(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以代入,也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”、“不存在”、“是否存在”等语句表达.解答这类问题时,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假. 2.【答案】C【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C. 【名师点睛】本题考查特称命题和全称命题的否定形式,属识记基础题.。