摩擦磨损原理 2 固体表面接触分解
- 格式:ppt
- 大小:222.00 KB
- 文档页数:33
摩擦和磨损的联系一、摩擦和磨损的基本概念及关系摩擦力是指两个接触物体相对运动时出现的阻力,而磨损是指固体表面在相对运动或接触过程中,由于摩擦力所引起的物质的消耗和形貌的变化。
摩擦和磨损密切相关,两者之间存在着紧密的联系。
本文将对摩擦和磨损的关系进行全面深入的探讨。
二、摩擦对磨损的影响1. 摩擦对磨损程度的影响摩擦力的大小直接决定了磨损的程度。
当两个物体之间的摩擦力增大时,磨损程度也会相应增加。
摩擦力的大小与物体间的相互作用力、表面粗糙度以及润滑情况等因素密切相关。
2. 摩擦对磨损方式的影响摩擦力的作用下,可以产生不同的磨损方式。
当两个物体间的摩擦力较小时,可能会出现微小的磨粒,造成表面磨损;当摩擦力增大时,可能会出现表面剥蚀、刮伤等更为明显的磨损方式。
3. 摩擦对磨损速率的影响摩擦力的大小还会直接影响磨损速率。
摩擦力越大,物体表面的材料消耗速度越快,磨损速率也会相应增加。
因此,在工程设计中需要合理控制摩擦力的大小,以减缓磨损速率,延长材料的使用寿命。
三、磨损对摩擦的影响1. 磨损对摩擦力的影响磨损会造成物体表面的不平整,增加了摩擦力的大小。
磨损表面的粗糙度会显著影响摩擦力的大小。
当物体表面经过长时间的磨损后,摩擦力可能会大幅增加,从而对摩擦产生重大影响。
2. 磨损对摩擦过程的影响磨损会改变物体表面的形貌和材料特性,从而对摩擦过程产生影响。
磨损会使物体表面变得粗糙,增加了接触面积,改变了摩擦系数。
此外,磨损还会引起表面的氧化、硬质颗粒剥离等现象,进一步改变了摩擦过程的特性。
3. 磨损对摩擦耐磨性能的影响磨损会降低物体的摩擦耐磨性能。
物体经过长时间的磨损后,表面会变得疲劳、龟裂、掉屑等,从而降低了摩擦耐磨性能。
因此,在工程设计中需要充分考虑材料的磨损特性,选择具有较高耐磨性的材料,以提高摩擦耐磨性能。
四、如何减少摩擦和磨损1. 合理润滑润滑是减少摩擦和磨损的重要手段之一。
润滑可以在物体表面形成一层保护膜,减少摩擦力的大小,降低磨损程度。
固体表面与接触特性综述固体表面与接触特性摘要:简要介绍了固体表面的几何特性包括表面波纹度、表面粗糙度和支撑面积曲线,固体表面的物理物理与化学特性,接触表面间的相互作用与接触面积,接触力学和接触变形。
关键词:固体表面,几何特性,物理特性,化学特性,接触特性1 固体表面特性摩擦磨损是在相互接触的物体表面进行的,因此研究接触体摩擦表面的性质是研究摩擦磨损的基础。
[1]固体的表面性质主要包括两方面的内容,即表面形貌与表面组成。
前者着重研究表面的形状,后者着重研究表面的结构及表面的物理、化学性质。
1.1 固体表面几何特性1.1.1表面波纹度表面波纹度是零件表面周期性重复出现的一种几何形状误差,波纹度有两个重要参数即波高h和波距s 。
波高h表示波峰与波谷之间的距离,波距s表示相邻两波形对应点的距离。
表面波纹度会减少零件实际支承表面面积,在动配合中会引起零件磨损加剧。
[1]表面波纹度通常是由于机加工时不均匀的进刀、不均匀的切削刀或机床的振动引起的。
[2]1.1.2 表面粗糙度表面粗糙度不像表面波纹度那样具有明显的周期性,其波距和波高均较小,常用下列指标对表面粗糙度进行评定:(1)轮廓算数平均偏差Ra(2)均方根偏差Rq(3)微观不平十点高度Rz(4)轮廓最大高度Rmax[3]不同形状和轮廓的表面用上述不同方法测得的粗糙度值也不同.但在一定程度上,它们之间可以相互换算。
以上参数仅能说明表面轮廓在高度方向的偏差,不能说明表面凸峰的形状、大小和分布状况等待性。
因此还需要有其它参数如微凸体的峰顶曲率半径、微凸体的坡度、密度以及支承面积等来加以描述[4]。
1.1.3 支撑面积曲线支承面积曲线不仅能表示粗糙表层的微凸体高度的分布,而且也能反映摩擦表面磨损到某一程度时,支承面积的大小[5]。
支撑面积曲线主要用于计算实际接触面积。
在标准长度1的轮廓线上,做与中线平行的一系列直线,将各条平行线截取的轮廓图形中微凸体的长度相加,分别画在轮廓图的右边。
机械运动中的摩擦与磨损分析一、引言机械运动中的摩擦与磨损是一个广泛存在于各类设备与机械系统中的问题。
摩擦与磨损不仅会降低机械设备的效率,还会导致设备寿命的缩短,甚至引发设备故障。
因此,对于机械运动中的摩擦与磨损进行深入分析与研究具有重要意义。
二、摩擦与磨损的概念及影响因素1. 摩擦是指两个固体在接触表面上相互抵抗相对运动的力。
摩擦力的大小与接触面的粗糙度、物体质地以及表面润滑状况等因素相关。
2. 磨损是指固体表面因摩擦力或其他力的作用而磨掉一部分材料的现象。
磨损也与材料的硬度、接触面的负荷和速度等因素密切相关。
三、摩擦与磨损的分类与机理1. 滑动摩擦与磨损:两个物体表面在相对滑动时发生的摩擦和磨损。
滑动摩擦和磨损的机理主要是表面间的摩擦力和相互作用力集中在局部点上,使材料发生破坏。
2. 滚动摩擦与磨损:当两个物体在相互滚动时,由于接触点的轮廓不断改变,从而形成滚动摩擦,并引起表面磨损。
四、摩擦与磨损的预防与控制方法1. 优化设计:通过合理的材料选择、表面润滑处理以及接触面的几何形状设计,最小化摩擦与磨损的产生。
2. 润滑剂的使用:使用润滑剂可以减少物体表面之间的直接接触,从而降低摩擦和磨损。
润滑剂的选择应根据具体情况进行,常见的润滑方式包括干润滑、液体润滑和固体润滑等。
3. 表面处理技术:通过表面镀覆、喷涂、化学处理等方式对接触表面进行改性,提高表面的硬度、润滑性和抗磨性能。
4. 定期维护与保养:对机械设备进行定期保养和维护,及时更换磨损部件,增加机械运行的可靠性和寿命。
五、摩擦与磨损的测量和评估方法1. 摩擦力的测量:可以通过力传感器、压电传感器等装置来测量物体之间的摩擦力大小。
2. 磨损量的评估:可以通过测量设备表面的几何形状变化、重量损失、材料组织的变化等指标来评估磨损量。
六、案例分析:汽车发动机摩擦与磨损问题以汽车发动机为例,介绍摩擦与磨损在工程中的应用。
在发动机中,摩擦与磨损是一个重要的研究方向。
表面摩擦失效磨损失效机理
表面摩擦失效是指在固体材料表面受到摩擦作用时,表面出现磨损或失效的现象。
表面摩擦失效的主要机理包括以下几种:
1. 粘着磨损:当两个表面在接触和相对运动时,由于表面间的接触压力使得局部的温度和压力升高,导致表层材料软化,发生粘接和剥离。
剥离的材料会形成微小颗粒,当摩擦继续进行时,这些颗粒会进一步磨损表面。
2. 磨粒磨损:在摩擦过程中,可能会存在一些外来物质或者磨料颗粒,在固体表面与摩擦物体之间起到磨料的作用,直接磨损表面。
3. 疲劳磨损:由于重复的应力作用,材料表面可能会发生裂纹的产生和扩展,最终导致表面失效。
4. 腐蚀磨损:在摩擦过程中,如果固体材料表面受到化学腐蚀的作用,会导致表面的受损和失效。
以上机理可能会同时发生,相互作用,导致表面的摩擦失效。
为了减少表面摩擦失效,可以采取表面处理、润滑剂使用、改变材料性质等方法。
机械工程中的摩擦和磨损分析摩擦和磨损是机械工程中一个非常重要的问题,在各个领域都有广泛的应用。
机械部件的摩擦和磨损不仅会减少机械系统的寿命,还可能导致不必要的故障和损失。
因此,对于摩擦和磨损行为的分析和理解对于设计和维护高性能的机械系统非常关键。
首先,我们来讨论一下摩擦的基本原理。
摩擦是指两个物体在接触面上相对运动时产生的阻力。
摩擦力的大小与接触面的性质、润滑状况以及施加在物体上的压力有关。
光滑的表面和适当的润滑可以减少摩擦力,从而降低能量损失和机械磨损。
摩擦力的大小也与物体间的形状和表面粗糙度有关。
在机械系统中,摩擦的控制和管理是非常重要的。
一方面,适当的摩擦力可以确保机械部件的稳定性和可靠性。
另一方面,过高的摩擦力会导致能量损耗和磨损加剧。
因此,我们需要对摩擦力进行合理的控制。
然而,机械部件在运行过程中难免会出现磨损现象。
磨损是由于相对运动的机械部件表面之间的接触而引起的,通常也与摩擦有关。
磨损会导致机械部件尺寸减小、表面质量下降、性能下降甚至故障。
因此,磨损的分析和评估对于确保机械系统的正常运行非常重要。
了解磨损的机理是进行磨损分析的基础。
磨损通常可以分为三种基本类型:磨粒磨损、痕迹磨损和表面磨损。
磨粒磨损是由于夹杂物或异物在接触面间形成摩擦而划伤表面的现象。
痕迹磨损是由于固体颗粒在摩擦过程中刮伤表面所引起的。
表面磨损则是由于两个表面直接接触导致的落料、刮擦或剪切。
我们有多种分析方法来研究摩擦和磨损现象。
其中一种常用的方法是摩擦试验。
摩擦试验可以模拟实际工况,通过测试材料间的摩擦性能来评估磨损行为。
摩擦试验可以提供有关摩擦系数、摩擦副间的复杂相互作用以及摩擦表面特征的信息。
此外,表征和评估磨损的技术也在不断发展。
例如,扫描电镜技术可以用于观察和分析磨损表面的形貌和结构。
红外热成像和声发射技术可以用于实时监测和检测机械系统中的磨损。
这些新技术为磨损分析提供了更加全面、准确的数据。
通过对摩擦和磨损行为的认识和分析,我们可以采取有效的措施来减少磨损和延长机械部件的使用寿命。
机械结构的摩擦学与表面工程技术摩擦学是研究有关物体相对运动时表面接触与相互作用的科学。
在机械结构中,摩擦是一个重要的问题,因为它与能量损失、磨损、噪音和失效等相关。
为了减少摩擦带来的不利影响,科学家和工程师们研发并应用了各种表面工程技术。
在本文中,我们将探讨机械结构的摩擦学及其与表面工程技术的关系。
一、摩擦学的基本原理摩擦是由于两个物体表面间的相互接触引起的阻碍相对运动的力。
在微观层面上,摩擦力是由于表面不完全光滑,而导致表面间的接触和分离产生的。
表面粗糙度、压力、相对运动速度和接触材料的性质等都对摩擦力产生影响。
摩擦力可以分为静摩擦力和动摩擦力。
静摩擦力是在物体尚未开始相对运动时产生的阻力,而动摩擦力是物体开始相对运动后产生的阻力。
静摩擦力通常比动摩擦力大,当受到外力作用时,物体将首先克服静摩擦力才能开始运动。
摩擦力可以通过使用润滑剂来减小。
润滑剂通常是液体或固体,用于填充表面间的凹坑或提供一个滑动的界面。
润滑剂的选择取决于具体的应用,例如液体润滑剂常用于高速运动系统中,而固体润滑剂则更适用于高温环境。
二、表面工程技术在摩擦学中的应用表面工程技术是通过改变材料表面的特性来改善摩擦性能。
以下是几种常见的表面工程技术:1. 表面涂层技术:表面涂层技术包括在材料表面涂上一层具有特殊性能的材料。
这些涂层可以减小摩擦系数、增加润滑性以及提供保护层。
例如,钢件表面可以镀上一层具有低摩擦系数的金属,如镍或铜,以减小摩擦力并降低磨损。
2. 表面改性技术:表面改性技术主要通过物理或化学方法改变材料表面的性质。
蚀刻、沉积和离子注入等方法可以改变材料表面的组成和结构,从而改善摩擦性能。
例如,在钢件表面进行离子注入,可以形成一个硬度更高、耐磨性更好的表面层。
3. 表面磨削技术:表面磨削技术是通过切削或研磨材料表面来改变其形状和粗糙度。
通过磨削可以减小材料表面的粗糙度,从而减小接触面积和摩擦力。
此外,磨削过程还可以产生一个更加光滑的表面,降低与其他物体的摩擦。
固体表面的接触(弹性接触和塑性接触)接触中,真实接触面积的大小与载荷成正比,(什么接触属性?塑性接触?弹性接触?)滑动摩擦定律:1. 摩擦力F 的大小与接触面间法向载荷成正比F W μ=2. 摩擦力的大小和名义接触面积的大小无关3. 动摩擦力的大小与滑动速度无关当法向载荷较大,使实际接触面积接近名义接触面积时,以及极硬材料与极软材料组成的摩擦副,摩擦力与法向载荷不满足正比关系。
对于弹性或粘弹性材料的摩擦,摩擦力与名义接触面积相关。
此外,许多材料的摩擦系数都随滑动速度和载荷的大小而变化。
对于具有确定的屈服极限的材料(金属材料),摩擦力的大小和名义接触面积无关。
若表面十分洁净、平整,则在相互接触的实际面积上将出现强烈的分子引力,此时摩擦力与名义接触面积有关。
此外,弹性材料和粘弹性材料的摩擦力和名义接触面积有关。
滑动摩擦理论——弹性界面分子—机械理论:/r A W μαβ=+/s r W A σ=,s σ屈服极限,/s μασβ=+Archard 弹性摩擦模型:仅有弹性变形的微凸体同样可以产生摩擦/b b a r F W W A pττμ===,b τ剪应力 根据赫兹接触得到的平均压力的公式, *2/31/3**2/31/3*3()44()3b a b R W E E W Rτπμτπ-== 则摩擦力*2/32/3*3()4b R F W E τπ= 评价磨损的定量指标比磨损率(specific wear rate ):单位载荷(N )及单位摩擦行程(m )内的磨损体积(3/mm N m) 磨损系数(coefficient of wear ,w K ): 摩擦副材料的体积磨损(V ,单位为3m )和较软材料屈服应力(m P,单位为Pa )之乘积对摩擦功(滑动距离与载荷的乘积)之比的无量纲数,即/()w m K VP Wl = 磨损因子K (wear factor ):滑动轴承的径向线磨损(h )除以名义接触压力(p )与行程(s )的乘积,即/()K h ps = Archard 磨损计算模型,针对黏着磨损提出,接触状态:塑性接触,基于以下假设:1. 微凸体相互作用时,会发生局部接触2. 真实接触面积正比于法向载荷3. 每个微凸体的接触是圆形的4. 金属微凸体发生塑性变形5. 接触是等温的聚乙烯在接触应力为12~15MPa 时,磨损严重,接触应力达到12MPa 时,产生局部塑性变形。