(完整版)高中数学解析几何知识点总结大全
- 格式:doc
- 大小:1.14 MB
- 文档页数:16
§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x .注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线.附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当90≠θ时21121tan k k k k +-=θ.⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.5.过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1.两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。
高中数学解析几何知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!高中数学解析几何知识点总结高中数学解析几何知识点总结模板4篇生命科学的知识可以让我们更好地认识人类的身体健康和生存环境。
高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。
下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。
2.平面与平面的位置关系:两个平面可以相交、平行或重合。
二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。
2.向量的表示方法:向量可以用有向线段或坐标表示。
3.向量的加法:向量的加法满足平行四边形法则。
4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。
5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。
6.向量的乘法运算法则:分配律、结合律和交换律。
三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。
2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。
3.直线的性质:平行、垂直、斜率、倾斜角等。
4.直线的位置关系:两条直线可以相交、平行或重合。
四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。
2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。
3.曲线的性质:焦点、准线、离心率等概念的理解。
4.曲线的位置关系:两条曲线可以相交、相切或没有交点。
五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。
2.空间直线的位置关系:两条空间直线可以相交、平行或重合。
3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。
六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。
2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。
七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。
2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。
高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。
- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。
- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。
2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。
- 点法式方程:通过平面上一点和法向量来确定平面方程。
- 一般式方程:由平面的法向量和一个常数项确定平面方程。
3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。
- 点向式方程:通过直线上一点和方向向量来确定直线方程。
- 一般式方程:由直线的法向量和一个常数项确定直线方程。
4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。
5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。
6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。
- 空间中的球面与圆的方程可以通过中心点和半径来确定。
7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。
- 二次曲线的方程可以通过焦点、直径等要素来确定。
以上是高中数学解析几何的一些主要知识点。
通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。
解析几何知识点总结一、直线1、直线的倾斜角直线倾斜角的范围是0, π)。
当直线与 x 轴平行时,倾斜角为 0;当直线与 x 轴垂直时,倾斜角为π/2 。
2、直线的斜率经过两点 P₁(x₁, y₁),P₂(x₂, y₂)(x₁≠x₂)的直线的斜率 k =(y₂ y₁)/(x₂ x₁)。
当直线的倾斜角α≠π/2 时,直线的斜率 k =tanα 。
3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上的两点。
(4)截距式:x/a + y/b = 1 ,其中 a 是直线在 x 轴上的截距,b是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0 (A、B 不同时为 0)。
4、两条直线的位置关系(1)平行:若两条直线的斜率都存在,分别为 k₁,k₂,则 k₁=k₂;若两条直线的一般式方程分别为 A₁x + B₁y + C₁= 0 ,A₂x+ B₂y + C₂= 0 ,则 A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 。
(2)垂直:若两条直线的斜率都存在,分别为 k₁,k₂,则k₁k₂=-1 ;若两条直线的一般式方程分别为 A₁x + B₁y + C₁=0 ,A₂x + B₂y + C₂= 0 ,则 A₁A₂+ B₁B₂= 0 。
5、点到直线的距离点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。
6、两条平行线间的距离两条平行线 Ax + By + C₁= 0 ,Ax + By + C₂= 0 (C₁≠C₂)间的距离 d =|C₁ C₂| /√(A²+ B²) 。
高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。
范围:倾斜角的范围为0°到180°。
特殊情况:当直线垂直于x轴时,斜率不存在。
直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。
注意,当斜率不存在时,此形式不适用。
斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。
圆:圆的标准方程:描述圆的基本形式。
圆心与半径:定义圆的中心和大小。
切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。
二次曲线:椭圆:定义、标准方程、焦点、准线等性质。
双曲线:定义、标准方程、焦点、准线等性质。
抛物线:定义、标准方程、焦点、准线等性质。
向量:向量的运算:包括向量的加减、数量积、向量积等。
向量的性质:如向量的模、方向余弦等。
向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。
空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。
空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。
平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。
以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。
在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。
“解析几何”一网打尽(一)直线1.[)⎪⎭⎫⎝⎛≠≠--==∈2112122tan 0x x x x y y k l ,,,直线的倾斜角πααπα2.直线的方程(1)点斜式11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)一般式 0Ax By C ++=(其中A 、B 不同时为0).特别的:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =;已知直线横截距0x,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 ⇔直线的斜率为-1或直线过原点;直线两截距互为相反数 ⇔直线的斜率为1或直线过原点; 直线两截距绝对值相等 ⇔直线的斜率为1±或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3、几个距离公式(1)两点间距离公式:1122(,)(,)A x y B x y AB =点点 (2)00(,)x y P 到直线0Ax By C ++=的距离为d =特别地,当直线L: 0x x =时,点P (00,x y )到L 的距离0d x x =-; 当直线L: 0y y =时,点P (00,x y )到L 的距离0d y y =-.(3).两平行线间的距离公式:设1122:0,:0,l Ax By C l Ax By C d ++=++==则4.两直线的位置关系:12121212121()0l l k k k k A A B B ⊥⇔=-⇔+=、都存在时;{{1212211212121221//()k k A B A B l l k k b b AC A C ==⇔⇔≠≠、都存在时;重合5.三角形的重心坐标公式 :△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.(二)圆1. 圆的三种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ) 注意:(1).圆心必在弦的中垂线上;两圆相切,两圆心连线必过切点;辅助线一般连圆心与切点或者连圆心与弦中点。
高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
高考数学解析几何知识点归纳解析几何是高考数学中的一个重要板块,它将代数与几何巧妙地结合在一起,具有较强的综合性和逻辑性。
以下是对高考数学中解析几何知识点的详细归纳。
一、直线1、直线的倾斜角与斜率倾斜角:直线与 x 轴正方向所成的角,范围是0, π)。
斜率:当倾斜角不是 90°时,斜率 k =tanα(α 为倾斜角)。
过两点 P(x₁, y₁),Q(x₂, y₂)的直线斜率 k =(y₂ y₁) /(x₂ x₁)(x₁≠ x₂)。
2、直线的方程点斜式:y y₁= k(x x₁),适用于已知斜率和一点的情况。
斜截式:y = kx + b,其中 k 为斜率,b 为截距。
两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁),适用于已知两点的情况。
截距式:x / a + y / b = 1,其中 a、b 分别为 x 轴和 y 轴上的截距(a ≠ 0,b ≠ 0)。
一般式:Ax + By + C = 0(A、B 不同时为 0)。
3、两直线的位置关系平行:斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂(斜截式);A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 (一般式)。
垂直:斜率之积为-1,即 k₁k₂=-1 (斜率都存在);A₁A₂+ B₁B₂= 0 (一般式)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程标准方程:(x a)²+(y b)²= r²,圆心为(a, b),半径为 r。
一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。
高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。
在空间中,点可以用三维坐标表示。
•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。
•平面:由无数点在同一平面上组成。
2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。
•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。
•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。
二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。
•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。
2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。
•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。
•向量的表示:向量可以用有序数组、列矩阵或坐标表示。
三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。
•斜截式方程:通过截距和斜率来表示直线的方程。
•两点式方程:通过两个已知点来表示直线的方程。
•一般式方程:直线的一般方程为Ax + By + C = 0。
2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。
•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。
四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。
•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。
2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。
•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
最新高二数学解析几何知识点1.平面几何基础知识-直线、线段、射线的概念及性质-平面、点、角的概念及性质2.向量基本概念-向量的定义、加法、减法及其性质-向量的数量积、向量积及其性质3.平面向量的应用-平面向量的模、方向和零向量的概念-平面向量共线与方向相同、反向及垂直的判断方法-平面向量的线性运算及坐标表示-平面向量的投影及夹角的计算4.直线与圆的性质-直线的方程、斜率和与坐标轴的交点-圆的基本概念、圆心和半径的计算公式-直线与圆的位置关系及相交情况的判断方法5.二次函数与图像-二次函数的图像、拐点、对称性及最值-根据已知条件求解二次函数的相关参数-二次函数与坐标轴的交点及与抛物线的位置关系6.空间几何基本概念-空间直线、平面的方程及其相交情况的判断方法-点关于直线、平面的投影和距离的计算公式7.空间向量的基本概念-空间向量的坐标、夹角、共线性和垂直性的判断方法-空间向量的线性运算及应用8.空间解析几何的一般方程-空间点的坐标表示及不同平面之间的关系-直线和平面的交点及与坐标轴的交点的计算方法9.空间解析几何的方向向量与法向量-空间向量的方向余弦及方向角的计算-直线与平面的向量形式方程及其应用10.空间解析几何的方程-平面的一般方程及各种特殊方程的表示方法-空间直线和平面相交的条件及交点的计算方法11.空间解析几何的位置关系与距离-点和直线、点和平面的位置关系的判断方法-直线和平面的距离及点到直线、点到平面的距离的计算公式12.空间曲线基本概念与参数方程-空间三角形和四边形的定向面积及体积的计算方法-平面与空间曲线的相交关系及切线方程的求解方法13.空间曲线方程的一般方程-空间直线和平面的位置关系及相交情况的判断方法-空间曲线的一般方程及其解析式的推导和应用14.空间曲线的旋转曲线-极坐标、球坐标及柱坐标中曲线方程的表示方法-曲线在旋转过程中的投影和旋转体的体积计算方法15.空间曲线的其他表示方法-参数方程、一般方程、向量方程与轴测图之间的转换关系-空间曲线在不同坐标系中的表示及转换方法16.空间几何的相关题型解析-空间几何题型的解题方法和技巧的总结与应用。
最新高二数学解析几何知识点1.直线的方程与性质:-直线的斜率与倾斜角的关系;-直线与坐标轴的交点;-点斜式方程、两点式方程和截距式方程的相互转化;-直线的平行和垂直关系。
2.圆的方程与性质:-圆的标准方程和一般方程;-圆心和半径的计算;-相交圆的位置关系;-弦长和弧长的计算。
3.圆的切线与法线:-切线和法线的斜率和倾斜角的计算;-切线和法线方程的推导和计算。
4.二次曲线的方程与性质:-椭圆的标准方程和一般方程;-椭圆的中心、焦点、准线、长轴和短轴的计算;-抛物线的标准方程和一般方程;-抛物线的焦点、准线、顶点和焦半径的计算;-双曲线的标准方程和一般方程;-双曲线的中心、焦点、准线、焦半径和渐近线的计算。
5.直线与圆的位置关系:-相离、相切和相交的判定方法;-相交点的个数和位置的计算。
6.圆与圆的位置关系:-相离、相切和相交的判定方法;-相交弦的位置和切点的计算。
7.三角形的重心、外心、垂心和内心:-重心的定义、性质和计算;-外心的定义、性质和计算;-垂心的定义、性质和计算;-内心的定义、性质和计算。
8.三角形的相似与全等:-三角形相似的判定条件;-三角形相似的性质和计算;-三角形全等的判定条件;-三角形全等的性质和计算。
9.三角形的中位线、高线、角平分线和垂直平分线:-三角形中位线的性质和计算;-三角形高线的性质和计算;-三角形角平分线的性质和计算;-三角形垂直平分线的性质和计算。
10.空间几何图形的性质与计算:-二面角、二面立体角的计算;-空间直线和平面的位置关系;-空间直线的方程和性质;-平面与平面的位置关系。
11.球面的方程与性质:-球面的标准方程和一般方程;-球心和半径的计算;-球面的切线和切点的计算。
12.圆锥曲线的方程与性质:-椭圆锥的方程和性质;-抛物线锥的方程和性质;-双曲线锥的方程和性质;-非退化圆锥曲线的判定条件。
13.空间向量的内积和外积:-空间向量的定义、表示和性质;-空间向量的数量积和向量积的定义和性质;-向量的投影和模长计算;-向量的夹角和垂直判定。
高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。
本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。
一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。
坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。
该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。
2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。
3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。
二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。
我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。
(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。
(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。
斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。
2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。
3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。
三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。
在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。
解析几何学问点一、基本内容(一)直线的方程1、 直线的方程确定直线方程须要有两个相互独立的条件,而其中一个必不行少的条件是直线必需经过一已知点.确定直线方程的形式许多,但必需留意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k 1,k 2都存在且k 1·k 2≠外留意到角公式与夹角公式的区分.(2)推断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来推断.但若直线斜率不存在,则必需用一般式的平行垂直条件来推断.(二)圆的方程(1)圆的方程1、 驾驭圆的标准方程及一般方程,并能娴熟地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式便利,留意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径为22142D E F +-。
3、 在圆(x -a )2+(y -b )2=r 2,若满意a 2+b 2=r 2条件时,能使圆过原点;满意a=0,r >0条件时,能使圆心在y 轴上;满意b r =时,能使圆与x 轴相切;满意2a b r -=条件时,能使圆与x -y =0相切;满意|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PBk k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,肯定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,探讨直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上随意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别状况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),干脆列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:假如点运动的规律就是一些几何量的等量关系,这些条件简洁、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满意的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.假如相关点满意的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的学问分析图形性质,发觉动点运动规律.(4)参数法:有时很难干脆找出动点的横纵坐标之间关系.假如借助中间参量(参数),使x ,y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特殊留意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简洁,这与利用对称性建立直角坐标系有关.同时,还应留意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形态和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它确定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的其次定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。
高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
高中数学解析几何知识点归纳总结直线- 两点确定一条直线:已知两点 $A(x_1, y_1), B(x_2, y_2)$,直线的斜率为 $k = \dfrac{y_2 - y_1}{x_2 - x_1}$,直线方程为 $y -y_1 = k(x - x_1)$。
- 两直线平行和垂直的判定条件:已知直线 $l_1: y = k_1x +b_1$,直线 $l_2: y = k_2x + b_2$,如果 $k_1 = k_2$,则两直线平行;如果 $k_1 \cdot k_2 = -1$,则两直线垂直。
平面- 三点确定一个平面:已知三点 $A(x_1, y_1, z_1), B(x_2, y_2, z_2), C(x_3, y_3, z_3)$,平面方程为 $Ax + By + Cz + D = 0$,其中$A = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}$,$B = -\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}$,$C =\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$,$D = -x_1 \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} + y_1\begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix} - z_1\begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}$。
- 平面与坐标轴的交点:已知平面方程为 $Ax + By + Cz + D =0$,如果 $z = 0$,则交点为 $(x_0, y_0, 0)$,其中 $x_0 = -\dfrac{D}{A}$,$y_0 = -\dfrac{D}{B}$;同理,如果 $x = 0$,交点为 $(0, y_0, z_0)$,其中 $y_0 = -\dfrac{D}{B}$,$z_0 = -\dfrac{D}{C}$;如果 $y = 0$,交点为 $(x_0, 0, z_0)$,其中 $x_0 = -\dfrac{D}{A}$,$z_0 = -\dfrac{D}{C}$。
《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。
高中数学解析几何知识点解析几何是高中数学中的一个重要板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了新的思路和方法。
下面我们就来详细了解一下高中数学解析几何的主要知识点。
一、直线的方程1、直线的倾斜角直线倾斜角的范围是0, π),它是直线与 x 轴正方向所成的夹角。
2、直线的斜率斜率可以通过倾斜角的正切值来计算,即k =tanα(α 为倾斜角)。
当直线垂直于 x 轴时,斜率不存在。
3、直线的点斜式方程如果已知直线上一点(x₁, y₁) 以及直线的斜率 k,那么直线方程可以表示为 y y₁= k(x x₁) 。
4、直线的两点式方程已知直线上两点(x₁, y₁),(x₂, y₂)(x₁ ≠ x₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。
5、直线的一般式方程Ax + By + C = 0(A、B 不同时为 0)。
二、两条直线的位置关系1、平行两条直线斜率相等时平行,但要注意当两条直线都垂直于 x 轴时,虽然斜率不存在,但也平行。
2、垂直两条直线斜率之积为-1 时垂直,当一条直线斜率为 0,另一条直线斜率不存在时,也垂直。
3、交点联立两条直线的方程,可以求解它们的交点坐标。
三、圆的方程1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。
2、圆的一般方程x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),通过配方可以化为标准方程。
四、直线与圆的位置关系1、相离圆心到直线的距离大于半径。
2、相切圆心到直线的距离等于半径。
3、相交圆心到直线的距离小于半径。
判断直线与圆的位置关系,可以通过比较圆心到直线的距离 d 与半径 r 的大小。
五、椭圆1、定义平面内到两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹。