9_对数线性模型分析
- 格式:ppt
- 大小:121.00 KB
- 文档页数:31
实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。
表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。
一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。
启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。
用户可以选择数据的时间频率(Frequency)、起始期和终止期。
图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。
然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。
图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。
它们当前的取值分别是0和NA(空值)。
可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。
⒉命令方式还可以用输入命令的方式建立工作文件。
在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。
⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。
对于分类数据的分析,最简单也是最广泛使用的是卡方检验,但卡方检验在处理分类数据时,有两个局限:1.卡方检验只能简单描述变量间的相关关系,而无法分析出具体的因果关系或变量间相互作用(效应)大小2.卡方检验通常用于2*2列联表,而对于高维列联表,则无法系统的评价变量间的关系,而对数线性模型则是分析高维列联表的常用方法。
基于以上问题,我们除了可以使用Logistic模型之外,还可以使用对数线性模型进行分析。
对数线性模型的结构类似于方差分析,思想也和方差分析一样,不同的是方差分析用于连续变量,而对数线性模型用于分类变量。
在方差分析中,观测值y 的变异由各因素的主效应、各因素之间的交互效应、随机误差三者之和组成。
而对于分类变量也可以采用这种方法进行分解,只不过此时的观测值y为频数而不是实际的观测值,最终观测值变异的组成也不是相加关系,而是乘积关系。
以两个分类变量α、β为例:M ij代表第i行第j列的频数αi代表变量α的主效应βj代表变量β的主效应(αβ)ij代表变量αβ的交互作用εij代表随机误差分类数据的频数分布一般分为多项式分布、二项式分布、泊松分布,取值在0—+∞之间,因此等式两边都取其对数ln,这样可以使期望频数取值在-∞—+∞,这就是所谓的对数线性模型。
模型的独立参数和自由度:独立参数个数=分类数-限制条件数数据提供的信息量=列联表中网格的数量模型自由度=信息量-独立参数个数对数线性模型的一个假设前提是:每个分类变量各水平的效应之和等于0========================================== ===对数线性模型的统计检验:对数线性模型的假设检验都是基于Pearson卡方检验和似然比卡方检验L2,当样本规模较大时,这两个统计值很接近,但似然比卡方更加稳健1.对模型的整体检验也就是拟合优度检验,两种卡方的零假设是:检验模型的频数估计与观测频数无差异,也就是拟合度良好2.分层效应检验类似于逐步回归的筛选自变量,分层效应检验就是逐步筛选交互作用,每剔除一种交互作用,就检验一次,主要是:某一阶及更高阶所有交互作用项的集体检验,检验是否显著表明这一阶及更高阶中是否至少有一项分类的效应是有意义的。
实验报告——线性模型与对数模型举例分析一、实验目的本实验的目的在于研究GNP 与货币是否有关系,若有关系有怎样的数量关系,用哪种模型来描述二者之间关系较为合适。
二、下面根据GNP/货币供给数据,得到的回归结果(Y=GNP ,X=货币供给):年 GNP (10亿美元) Μ2 年 GNP (10亿美元) Μ2 1973 1359.3 861.0 1981 3052.6 1795.5 1974 1472.8 908.5 1982 3166.0 1954.0 1975 1598.4 1023.2 1983 3405.7 2185.2 1976 1782.8 1163.7 1984 3772.2 2363.6 1977 1990.5 1286.7 1985 4014.9 2562.6 1978 2249.7 1389.0 1986 4240.3 2807.7 1979 2508.2 1500.2 1987 4526.7 2901.0 1980 2732.0 1633.1 平均值 2791.47 1755.70模型 截距 斜率2r双对数 0.5531 0.9882 0.9926t=(3.1652) 41.889 对数-线性 6.8616 0.00057 0.9493 (增长模型) t=(100.05) 15.597 线性-对数 -16329.0 2584.8 0.9832t=(-23.494) 27.549 线性 101.20 1.5323 0.9915 (LIV 模型) t=(1.369) 38.867a. 解释每个模型斜率的意义。
1. 双对数模型中斜率0.9882表示,货币供给每提高1个百分点,GNP 平均增加约0.98个百分点。
2. 对数―线性模型中的斜率0.00057表示,货币供给每增加1(10亿)美元,GNP 将以0.057%的速度增长。
3. 线性―对数模型中的斜率2584.8表示,货币供给每提高1个百分点,GNP 将增加25.848(10亿)美元。
计量经济学试题1一 名词解释(每题5分,共10分) 1. 经典线性回归模型 2. 加权最小二乘法(WLS ) 二 填空(每空格1分,共10分)1.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 1满足E ( b 1 ) = B 1,这表示估计量b 1具备 性。
2.广义差分法适用于估计存在 问题的经济计量模型。
3.在区间预测中,在其它条件不变的情况下,预测的置信概率越高,预测的精度越 。
4.普通最小二乘法估计回归参数的基本准则是使 达到最小。
5.以X 为解释变量,Y 为被解释变量,将X 、Y 的观测值分别取对数,如果这些对数值描成的散点图近似形成为一条直线,则适宜配合 模型。
6.当杜宾-瓦尔森统计量d = 4时,ρˆ= ,说明 。
7.对于模型i i i X Y μββ++=10,为了考虑“地区”因素(北方、南方两种状态)引入2个虚拟变量,则会产生 现象。
8. 半对数模型LnY i = B 0 + B 1X i + µI 又称为 模型。
9.经典线性回归模型Y i = B 0 + B 1X i + µi 的最小二乘估计量b 0、b 1的关系可用数学式子表示为 。
三 单项选择题(每个1分,共20分)1.截面数据是指--------------------------------------------------------------( )A .同一时点上不同统计单位相同统计指标组成的数据。
B .同一时点上相同统计单位相同统计指标组成的数据。
C .同一时点上相同统计单位不同统计指标组成的数据。
D .同一时点上不同统计单位不同统计指标组成的数据。
2.参数估计量βˆ具备有效性是指------------------------------------------( ) A .0)ˆ(=βar V B.)ˆ(βar V 为最小 C .0)ˆ(=-ββD.)ˆ(ββ-为最小 3.如果两个经济变量间的关系近似地表现为:当X 发生一个绝对量(X ∆)变动时,Y 以一个固定的相对量(YY /∆)变动,则适宜配合的回归模型是------------------------------------------------------------------------------------------- ( )A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 4.在一元线性回归模型中,不可能用到的假设检验是----------( ) A .置信区间检验 B.t 检验 C.F 检验 D.游程检验5.如果戈里瑟检验表明 ,普通最小二乘估计的残差项有显著的如下性质:24.025.1i i X e +=,则用加权最小二乘法估计模型时,权数应选择-------( )A .i X 1 B. 21i X C.24.025.11iX + D.24.025.11i X +6.对于i i i i X X Y μβββ+++=22110,利用30组样本观察值估计后得56.827/)ˆ(2/)ˆ(2=-∑-∑=iiiY Y Y Y F ,而理论分布值F 0.05(2,27)=3.35,,则可以判断( )A . 01=β成立 B. 02=β成立C.021==ββ成立 D. 021==ββ不成立7.为描述单位固定成本(Y )依产量(X )变化的相关关系,适宜配合的回归模型是:A .i i i X Y μβα++= B.i i i X Y μβα++=ln C .i ii X Y μβα++=1D.i i i X Y μβα++=ln ln 8.根据一个n=30的样本估计ii i e X Y ++=10ˆˆββ后计算得d=1.4,已知在95%的置信度下,35.1=L d ,49.1=U d ,则认为原模型------------------------( )A .存在正的一阶线性自相关 B.存在负的一阶线性自相关 C .不存在一阶线性自相关 D.无法判断是否存在一阶线性自相关9.对于ii i e X Y ++=10ˆˆββ,判定系数为0.8是指--------------------( ) A .说明X 与Y 之间为正相关 B. 说明X 与Y 之间为负相关 C .Y 变异的80%能由回归直线作出解释 D .有80%的样本点落在回归直线上10. 线性模型i i i i X X Y μβββ+++=22110不满足下列哪一假定,称为异方差现象-------------------------------------------------------------------------------( )A .0)(=j i ov C μμ B.2)(σμ=i ar V (常数)C .0),(=i i ov X C μ D.0),(21=i i ov X X C11.设消费函数i i i X D Y μβαα+++=10,其中虚拟变量⎩⎨⎧=南方北方01D ,如果统计检验表明1α统计显著,则北方的消费函数与南方的消费函数是--( )A .相互平行的 B.相互垂直的 C.相互交叉的 D.相互重叠的12. 在建立虚拟变量模型时,如果一个质的变量有m 种特征或状态,则一般引入几个虚拟变量:----------------------------------------------------------------( )A .m B.m+1 C.m -1 D.前三项均可 13. 在模型i i iX Y μββ++=ln ln ln 10中,1β为---------------------( )A .X 关于Y 的弹性 B.X 变动一个绝对量时Y 变动的相对量 C .Y 关于X 的弹性 D.Y 变动一个绝对量时X 变动的相对量14.对于i i i e X Y ++=10ˆˆββ,以S 表示估计标准误差,iY ˆ表示回归值,则-------------------------------------------------------------------------------------------( )A .S=0时,0)ˆ(=-∑ti Y Y B.S=0时,∑==-ni i i Y Y 120)ˆ( C .S=0时,)ˆ(ii Y Y -∑为最小 D.S=0时,∑=-ni i i Y Y 12)ˆ(为最小 15.经济计量分析工作的基本工作步骤是-----------------------------( )A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应用模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及方程式→应用模型16.产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为:X Y5.1356ˆ-=,这说明-----------------------------------------------------------( )A .产量每增加一台,单位产品成本平均减少1.5个百分点B .产量每增加一台,单位产品成本减少1.5元C .产量每增加一台,单位产品成本减少1.5个百分点D .产量每增加一台,单位产品成本平均减少1.5元17.下列各回归方程中,哪一个必定是错误的------------------------( )A .8.02.030ˆ=+=XY i i r X Y B. 91.05.175ˆ=+-=XY ii r X YC .78.01.25ˆ=-=XY i i r X Y D. 96.05.312ˆ-=--=XY ii r X Y18.用一组有28个观测值的样本估计模型i i i X Y μββ++=10后,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于0的条件是统计量t 大于-------------------------------------------------------------------------------------( )A .t 0.025(28) B. t 0.05(28) C. t 0.025(26) D. t 0.05(26)19.下列哪种形式的序列相关可用DW 统计量来检验(V t 为具有零均值、常数方差,且不存在序列相关的随机变量)---------------------------------( )A .t t t V +=-1ρμμ B.t t t t V +⋅⋅⋅++=--121μρρμμ C.t t V ρμ= D. ⋅⋅⋅++=-12t t t V V ρρμ20.对于原模型t t t X Y μββ++=10,一阶差分模型是指------------( )A .)()()(1)(1t tt t t t t X f X f X X f X f Y μββ++=B .t t t X Y μβ∆+∆=∆1C .t t t X Y μββ∆+∆+=∆10D .)()()1(11101----+-+-=-t t t t t t X X Y Y ρμμρβρβρ四 多项选择题(每个2分,共10分)1.以Y 表示实际值,Y ˆ表示回归值,ie 表示残差项,最小二乘直线满足------------------------------------------------------------------------------------------( )A .通用样本均值点(Y X ,) B.ii Y Y ˆ∑=∑ C .0),ˆ(=i i ov e Y C D.0)ˆ(2=-∑ii Y Y E .0)ˆ(=-∑Y Y i 2.剩余变差(RSS )是指--------------------------------------------------( )A .随机因素影响所引起的被解释变量的变差B .解释变量变动所引起的被解释变量的变差C .被解释变量的变差中,回归方程不能作出解释的部分D .被解释变量的总变差与解释变量之差E .被解释变量的实际值与回归值的离差平方和3. 对于经典线性回归模型,0LS 估计量具备------------------------( ) A .无偏性 B.线性特性 C.正确性 D.有效性 E.可知性4. 异方差的检验方法有---------------------------------------------------( ) A .残差的图形检验 B.游程检验 C.White 检验D.帕克检验E.方差膨胀因子检验5. 多重共线性的补救有---------------------------------------------------()A.从模型中删掉不重要的解释变量 B.获取额外的数据或者新的样本 C.重新考虑模型D.利用先验信息E. 广义差分法五简答计算题(4题,共50分)1.简述F检验的意图及其与t检验的关系。
第九章对数线性模型第一节 General过程9.1.1 主要功能9.1.2 实例操作第二节 Hierarchical过程9.2.1 主要功能9.2.2 实例操作第三节 Logit过程9.3.1 主要功能9.3.2 实例操作对数线性模型是用于离散型数据或整理成列联表格式的计数资料的统计分析工具。
在对数线性模型中,所有用作的分类的因素均为独立变量,列联表各单元中的例数为应变量。
对于列联表资料,通常作χ 2 检验,但χ 2 检验无法系统地评价变量间的联系,也无法估计变量间相互作用的大小,而对数线性模型是处理这些问题的最佳方法。
第一节 General过程9.1.1 主要功能调用该过程可对一个或多个二维列联表资料进行非层次对数线性分析。
它只能拟合全饱和模型,即分类变量各自效应及其相互间效应均包含在对数线性模型中。
返回目录返回全书目录9.1.2 实例操作[例9-1]在住院病人中,研究其受教育程度与对保健服务满意程度的关系,资料整理成列联表后如下所示。
按一般情形作χ2检验,结果显示不同受教育程度的住院病人其对保健服务满意程度无差别。
但从百分比分析中可见,随受教育程度的提高,满意程度有下降的趋势;且我们还想了解受教育程度与满意程度有无交互作用和交互作用的大小。
对此,必须采用对数线性模型加以分析。
9.1.2.1 数据准备激活数据管理窗口,定义变量名:实际观察频数的变量名为freq,受教育程度和满意程度作为行、列分类变量(即独立变量),变量名分别为educ、care。
输入原始数据,结果如图9.1所示。
如同第四章Crosstab过程中所述,为使列联表的频数有效,应选Data 菜单的Weight Cases...项,弹出Weight Cases对话框(图9.2),激活Weight cases by 项,从变量列表中选freq点击 钮使之进入Frequency Variable框,点击OK钮即可。
图9.1 原始数据的输入图9.2 频数的加权定义9.1.2.2 统计分析激活Statistics菜单选Loglinear中的General...项,弹出General Loglinear Analysis对话框(图9.3)。
数学模型种类常见的数学模型种类有线性模型、非线性模型、离散模型、连续模型、随机模型等。
下面将分别对这些数学模型进行介绍。
一、线性模型线性模型是一类广泛应用于各个领域的数学模型。
它的特点是模型的输出是输入变量的线性组合。
线性模型可以通过最小二乘法等方法拟合数据,求解模型的参数。
线性回归是线性模型的一个典型应用,它可以用于预测因变量和自变量之间的线性关系。
二、非线性模型与线性模型不同,非线性模型的输出不是输入变量的线性组合。
非线性模型在描述实际问题时更加准确,可以模拟更为复杂的现象。
常见的非线性模型有指数模型、幂函数模型、对数模型等。
非线性模型的求解通常需要使用数值方法,如牛顿法、拟牛顿法等。
三、离散模型离散模型是指模型中的自变量和因变量都是离散的情况。
离散模型常用于描述离散事件的发展规律,如排队论、图论等。
排队论可以分析队列长度、等待时间等指标,用于优化服务系统的设计。
图论可以描述节点和边之间的关系,用于解决网络优化问题。
四、连续模型与离散模型相反,连续模型中的自变量和因变量都是连续的情况。
连续模型常用于描述连续变量之间的关系,如物理学中的运动模型、经济学中的供需模型等。
运动模型可以描述物体在空间中的运动轨迹和速度变化规律,供需模型可以描述商品价格和需求量之间的关系。
五、随机模型随机模型是考虑随机因素的数学模型。
随机模型的输出具有一定的随机性,可以用概率分布来描述。
随机模型常用于风险评估、金融建模等领域。
蒙特卡洛方法是随机模型求解的一种常用方法,通过随机抽样来估计模型的输出。
线性模型、非线性模型、离散模型、连续模型和随机模型是常见的数学模型种类。
每种模型在不同领域和问题中都有其独特的应用价值。
在实际问题中,根据问题的特点选择合适的数学模型,可以更好地解决问题并得到准确的结果。
计量经济学第六章6.1 解释概念(1)双对数模型 (2)对数-线性模型 (3)线性-对数模型 (4)多项式回归(5)标准化变量 (6)边际效应 (7)弹性 (8)瞬时增长率 答:(1)双对数模型是一种广泛应用的函数形式,模型中的因变量和自变量都以对数度量,比如设定一个双对数模型12ln ln Y X u ββ=++(2)对数线性模型是指因变量取对数、解释变量为原有形式的模型。
比如:12log()wage educ u ββ=++。
(3)线性对数模型是指因变量为原有形式,解释变量取对数的模型。
比如:12ln Y X u ββ=++(4)多项式回归模型中解释变量并不都是以线性的形式出现,多项式是由常数和一个或多个解释变量及其正整数次幂构成的表达式。
多项式回归模型的一般函数形式表示为21123k k Y X X X u ββββ-=+++++(5)标准化变量是标准化变量就是将变量减去其均值并除以其标准差。
(6)边际效应是指一单位变量X 的变化所引起的变量Y 的单位变化。
(7)弹性是指一个变量变动的百分比相应于另一变量变动的百分比来反应变量之间的变动的灵敏程度。
(8)瞬时增长率是指仅当时间变动很小时,才近似等于因变量的相对变化。
6.2 考虑双对数模型12ln ln Y X u ββ=++分别描绘出21β=,21β>,201β<<,21β=-,21β<-,210β-<<时表现Y 与X 之间关系的曲线。
答:当21β=时,Y 和X 对应的是曲线是:当21β>时,对应的曲线是:201β<<时:21β=-时,Y 和X 对应的图形为:21β<-时,对应的函数为:210β-<<时,Y 和X的曲线为:6.3 在研究生产函数时,我们得到如下结果2ln 8.570.460ln 1.285ln 0.272(4.2)(0.025)(0.347)(0.041)360.889K L t se n R θ=-+++===其中θ为产量,K 为资本,L 为劳动时数,t 为时间变量。
对数线性模型第一节 General过程9.1.1 主要功能9.1.2 实例操作第二节 Hierarchical过程9.2.1 主要功能9.2.2 实例操作第三节 Logit过程9.3.1 主要功能9.3.2 实例操作对数线性模型是用于离散型数据或整理成列联表格式的计数资料的统计分析工具。
在对数线性模型中,所有用作的分类的因素均为独立变量,列联表各单元中的例数为应变量。
对于列联表资料,通常作χ 2 检验,但χ 2 检验无法系统地评价变量间的联系,也无法估计变量间相互作用的大小,而对数线性模型是处理这些问题的最佳方法。
第一节 General过程9.1.1 主要功能调用该过程可对一个或多个二维列联表资料进行非层次对数线性分析。
它只能拟合全饱和模型,即分类变量各自效应及其相互间效应均包含在对数线性模型中。
返回目录返回全书目录9.1.2 实例操作[例9-1]在住院病人中,研究其受教育程度与对保健服务满意程度的关系,资料整理成列联表后如下所示。
按一般情形作χ2检验,结果显示不同受教育程度的住院病人其对保健服务满意程度无差别。
但从百分比分析中可见,随受教育程度的提高,满意程度有下降的趋势;且我们还想了解受教育程度与满意程度有无交互作用和交互作用的大小。
对此,必须采用对数线性模型加以分析。
9.1.2.1 数据准备激活数据管理窗口,定义变量名:实际观察频数的变量名为freq,受教育程度和满意程度作为行、列分类变量(即独立变量),变量名分别为educ、care。
输入原始数据,结果如图9.1所示。
如同第四章Crosstab过程中所述,为使列联表的频数有效,应选Data菜单的Weight Cases...项,弹出Weight Cases对话框(图9.2),激活Weight cases by项,从变量列表中选freq点击 钮使之进入Frequency Variable框,点击OK钮即可。
图9.1 原始数据的输入图9.2 频数的加权定义9.1.2.2 统计分析激活Statistics菜单选Loglinear中的General...项,弹出General Loglinear Analysis对话框(图9.3)。
趋势分析和回归分析,线性、对数、多项式、盛幂、指数、移动平均分析有何不同?1 趋势分析法趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。
它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。
常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(logistic)模型、龚伯茨(gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。
采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。
在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。
但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。
分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kwh和85.08亿kwh。
拟合曲线如图1所示。
2 回归分析法回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。
其任务是确定预测值和影响因子之间的关系。
电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。
但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
对珠海市历年用电量和国内生产总值gdp、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727gdp+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kwh和70.98亿kwh。
对数线性模型
对数线性模型是一种极为重要的机器学习技术,近年来在互联网领域受到了广泛的应用。
这种模型是计算机学习中用来估计连续变量之间关系和预测未来结果的有效工具。
对数线性模型可用于在互联网中建立数据库结构,收集海量数据,并将这些数据转换为有用的信息。
通过对数线性模型的分析,可以识别出许多现实世界中的事件以及它们之间的联系,可以用来预测这些事件的发生结果。
例如,对数线性模型可以用于分析用户行为,可以预测某个给定的用户会做什么,有可能做什么,并可以根据用户的行为特点以及外部环境来建议一些精准的制定营销策略,从而为企业带来了更大的收益。
此外,通过对数线性模型的分析可以有效地识别新闻文本中的关键词和潜在的对向。
应用模型,可以在新闻文本中识别关键词,并计算出该话题的潜在对向,结合更广泛的背景,可以有效地增强互联网思维,为写作者提供写作参考。
总之,对数线性模型在互联网领域成为一种基础性而又十分重要的技术,它可以有效地应用于许多数据挖掘、用户分析及机器学习领域,促进企业数据分析及决策制定,从而提高企业市场竞争力。
第10章对数线性分析对数线性分析是一种分析多品质型变量之间关系的一种统计分析方法,一般适用于离散数据或整理成列联表形式的数据分析。
此时,它是以多维交叉列联表中的对数频数作为因变量进行研究,并运用卡方检验、多元素检验和多元线性回归等检验方法,对频数的变化成因和拟合变化规律等进行分析。
在本章中,将以SPSS分析软件为基本思路,详细介绍对数线性的基础原理和分析操作方法。
本章学习目标:常规模型Logit模型模型选择对数线性是将频数作为对数后分解成主效应和因素之间的交互效应,以用来反映各变量之间的关联性。
在使用SPSS 软件分析之前,还需要先了解一下对数线性分析的基本原理。
在实际分析过程中,经常会使用列联表来反映变量之间的联合分布。
当列联表中只存在两个变量时,被称为二维列联表;而当列联表中存在3个或多个变量时,被称为多维列联表。
列联表中的频数分布会受到主效应和交互效应的影响,其中:“ 主效应 用于反映因素自身效应的一种效应,在二维列联表中存在两个主效应。
“ 交互效应 用于反映各因素之间的关联性,在二维列联表中存在一个主效应。
在一般的二维列联表中进行分析时,系统会自动分析两个变量之间的关系,并直接显示相应的主效应和交互效应。
而当列联表中存在多个变量时,上述分析方法则无法明确地显示多个变量之间的关系,就算每次分析两个变量之间的关系,并经过多次两两交互的分析方法获得拼接后的多变量间复杂的分析关系,也无法显示联合交互效应。
此时,可以通过Logit 模型,解决二维列联表无法分析多维列联表变量的问题,从而可以有效地显示多维列联表中的变量关系。
在对数线性的饱和模型中,主效应的大小表示变量对期望频数的贡献,分析其主效应的大小无法反映变量之间的关系,只能通过分析交互效应才可以反映变量之间的关系。
假设分析数据中存在A 、B 、C 变量,基于这3个变量的饱和对数线性模型的表现公式为:ln AB CABBC ABCijk i j k ij jk ijkm λλλλλλλ=++++++公式中的m 表示期望频数;A i λ、B j λ和C k λ表示主效应;AB ij λ和BC jk λ表示二维交互效应;ABCijk λ表示三维交互效应。