概率论与数理统计(第3版)(谢永钦)第3章 随机向量
- 格式:pptx
- 大小:2.77 MB
- 文档页数:67
第三章随机向量X122C ;C ; 3c ; 53C ;C ; 25.4 (1) a=-95 12P{1<X < 乙 KYS 5张只2.5肝(1.3"仏5)—F(2.3 卜3 128<3)P{(X.r)eD}=f^『*6*必"制:[(6-〉”-討疗&T:(护-®+5討詁(护3+5”)|:=諾=善3.5 K: (1)y)工J: J:01 皿=f eP寸"血=(-<- UXr^ IS)=(1 -0X1 - 严)<2>P(rsx)= f:\f*如2严创;『dy =「2严(-八Qdx =J; 2宀(i十肚.j:(2宀》女肚=(・严3.6H: PC^ + JSa3.9B : x 術加HK 昨通»斤(0为:饴X>1 或xvOirL /(xj) = Op斤0) = [4.8>・(2-如=4 83[2*4门:*8川卜2》+黑计Zr(x) = O y > 或 <00<><1A(x) = f>.8y(2 “妙=2 妒(2-纠;=2*(2-x)©SOSxMl 时,/t (x) = | 4.8y(2-x>A =2 4y :(2-x)|r =2 4工(2・兀)3・7參见课本后面P227的答案3.8 f x (x) = J :/(x, >•>” J:訊如扌吟|:■专厶ox J :討法訐£ 'X0SXS2AW= 2* 0苴它/iO)h3>20<> <1 0其它Zr(x)h [(沖0<x<l=V2工+3°"幻3其它0 其它0<> <23 60< v<2其它 b 其它Y的血利K率密度跚齐3为:® 当或<0时尸/(x f>) = 0, /}(>) = 0②当0 Sg 时,力3 = f 4.8>(2-x>ft = 4 8>[2x-lr]|; = 4.8口1 卜2)+ £y2] =2.4>(3-4y+>:)MO (1〉券见课本石面P227的答案3 J2聲见课本后面P228的答案313 (1) 6x(17 0<x<l 0 其它0^x<l其它0<y<l其它311參见课本后面P228的答案【3+卸对TO<x<irt, A(x)>o2 5 X 她缘分布 1 0.15 0.250350.75 30.050.18 0.02 0.2S布0.2 0.430.371由表格可知 P{X-l;Y-2b0.29/:P{X.l}P{Y-2)-0.3225对于0<y<2时,/;(i)>0?0<x<l6x 2+ln0<x<lTT3 6 0 ■其它o+y其它-3-咖2卄犒h=2<+兰30 »JiX X故p^X=x)P{Y=y)所以X与Y不独立由鮭僚件P {X二工;丫二)[} "{工=卫尸{ Y=y)则P{X =2;K=2} = P{X = 2}P{Y = 2}P(X=2;r = 3) = P{X= 2}P{Y = 3}y;P{x=?}=iCO""30<x<2, 时,几(力齐(>)=4冷—/(兀“当x>2或x<OH,当)〉1 或y<o时,A(x)/iO) = o=/(x?j) 所以,x与Y之硼互独立・(訐(2〉衽3・9中,f x(x) =‘2.4三(2-力»0<x<l其它A(J)=2.4r(3-4v +y2)b 0^ v<l 其它3.16 B (J 在 3.8 中f x M= 2Io OSxS2其它AO) = <3y2 0<j ^16其它Xr(或40)二2・4疋(2-力2・4丿(3-4,+护)“・7&?(2-如3-令+小*/Uy),所以x与丫之冋不相5独NJ.17 解:二严=xe »)=匸心) f t(0=.匚fg 沁二 f* xe'(妇c以詁;芦希Z (x)/ o)=xe詁孑=fg >')故x与Y相歹檢立J・18聲见课本后面P228的答案。
概率论与数理统计(经管类第三版)第3章多维随机变量及其分布多维随机变量及其分布二维随机变量及其分布二维随机变量及其分布随机变量的独立性概率论与数理统计3.1 二维随机变量及其分布一、二维随机变量及其分布函数二维随机变量(p53) 1、二维随机变量(p53) 是随机试验E的样本空间设S是随机试验的样本空间,X=X(e),Y=Y(e)是是随机试验的样本空间,, 是定义在S上的随机变量上的随机变量,定义在上的随机变量,则由它们构成的一个二维向称为二维随机变量量(X,Y)称为二维随机变量或二维随机向量。
称为二维随机变量或二维随机向量。
二维随机变量(X,Y)的性质不仅与及Y有关,而的性质不仅与X及有关有关,二维随机变量的性质不仅与且还依赖于这两个随机变量的相互关系。
因此,且还依赖于这两个随机变量的相互关系。
因此,单独讨论X和的性质是不够的需要把(X,Y)作为一个整的性质是不够的,讨论和Y的性质是不够的,需要把作为一个整体来讨论。
随机变量X常称为一维随机变量常称为一维随机变量。
体来讨论。
随机变量常称为一维随机变量。
概率论与数理统计一维随机变量X――R1上的随机点坐标;上的随机点坐标;一维随机变量二维随机变量(X,Y)――R2上的随机点坐标;上的随机点坐标;二维随机变量。
n维随机变量1,X2,。
,Xn)―――Rn上的随维随机变量(X 维随机变量机点坐标。
机点坐标。
多维随机变量的研究方法也与一维类似,多维随机变量的研究方法也与一维类似,分布函数、概率密度函数或分布律来描述其用分布函数、概率密度函数或分布律来描述其统计规律。
统计规律。
概率论与数理统计二维随机变量的(联合) 2、二维随机变量的(联合)分布函数定义3.1 是二维随机变量,定义3.1 设(X,Y)是二维随机变量,二元是二维随机变量实值函数F(x,y)=P({X≤x}∩{Y≤y})=P(X≤x,Y≤y) ≤ ≤ ≤ ≤ x∈(-∞,+∞), y∈(-∞,+∞) ∈∈称为二维随机变量的分布函数,称为二维随机变量(X,Y)的分布函数,或称与Y 二维随机变量的分布函数或称X与的联合分布函数。
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
第三章 多维随机变量及其分布第二章所讨论的随机变量是一维的,但在实际问题中,某些随机试验的结果需要同时用至少两个随机变量来描述.例如,研究一个国家的经济发展程度,至少要考虑国民生产总值(GNP )和人均国民生产总值这两个指标。
又如,遗传学家在研究儿子的身高和父亲身高、母亲身高之间的关系时,需要同时考虑三个随机变量.因此,有必要将同一问题中的若干个随机变量视为一个整体,引入多维随机变量的概念。
定义在样本空间Ω上的多个随机变量组成的向量,称为多维随机变量.若12,,,n X X X K 是定义在样本空间Ω上的n 个随机变量,则称向量(12,,,n X X X K )为n 维随机变量或n 维随机向量.由于二维随机变量和更高维的随机变量没有本质的差异,故本章主要讨论二维随机变量及其分布.二维随机变量的所有结果,都可以平行地推广到)2(>n n 维随机变量的情形.3.1 二维随机变量的联合分布3.1.1 二维随机变量的概率分布定义1 设(,)X Y 是二维随机变量,对于任意实数x y ,,二元函数{}{{}}{}(,)F x y P X x Y y P X x Y y =I @,≤≤≤≤ (3.1)称为二维随机变量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数.若将二维随机变量(,)X Y 看成是平面上随机点(,)X Y 的坐标,那么分布函数(,)F x y 就表示随机点(,)X Y 落在以点(,)x y 为顶点的左下方的无限矩形区域内的概率(如图3-1阴影部分所示).分布函数(,)F x y 具有以下基本性质:(1)0(,)1F x y ≤≤;且对于任意固定的y ,()0F y -∞=,,对于任意固定的x ,()0F x -∞=,;同时 1)(0)(=∞++∞=∞--∞,;,F F . (2))(y x F ,分别是变量x 和y 的单调不减函数;(3)(0,)(,),(,0)(,),F x y F x y F x y F x y +=+=即(,)F x y 关于变量x 或y 右连续;图3-1 图3-2(4)对于任意2121y y x x <<,,有1212{}P x X x y Y y <<=,≤≤)()(1222y x F y x F ,,-1211()()0F x y F x y -+,,≥, (3.2)如图3-2所示.3.1.2 二维离散型随机变量及其分布定义2 如果二维随机变量()X Y ,的所有可能取值为有限个或者无限可列个数对,则称()X Y ,为二维离散型随机变量.显然,()X Y ,为二维离散型随机变量的充要条件是X 和Y 均为离散型随机变量.设二维离散型随机变量()X Y ,的所有可能取值为()i j x y ,,12,i j =L ,,,则称概率函数(}12,i j i j p P X x Y y i j ====L ,,,,. (3.3)为二维随机变量()X Y ,的概率分布(分布律),或称为X 和Y 的联合概率分布(联合分布律).容易看出,其中ij p 满足如下条件:(1)0ij p ≥;(2)∑∑+∞=+∞==111i j ij p .二维离散型随机变量()X Y ,的分布律可用如下表格表示,并称之为X 和Y 的联合分布表.YX1y2y… j y …1x 11p 12p…j p 1 …2x 21p 22p…j p 2 …M M M…M…i x 1i p2i p… ij p …M M M…M…它们的联合分布函数则由如下式子求出:(){,}i j i jx x y yF x y P X x Y y p≤≤==∑∑,≤≤, (3.4)其中和式是对一切满足,i j x x y y ≤≤的,i j 求和.例1 将两封信随机投入3个空邮筒,设X 、Y 分别表示第1、第2个邮筒中信的数量,求X 和Y 的联合概率分布,并求出第3个邮筒里至少投入一封信的概率.解 X 、Y 各自可能的取值均为0、1、2,由题设知,)(Y X ,取(1,2)、(2,1)、(2,2)均不可能. 取其他值的概率可由古典概率计算:221122{00}{01}{10}3939P X Y P X Y P X Y ===========,,,,,21{11},{20}{02},99P X Y P X Y P X Y =========,,,于是,X 和Y 的联合概率分布表为YX1291 92 91 192 92 0291 0 0P {第三个邮筒里至少有一封信}=P {第一、第二个邮筒里最多只有一封信}=}1{≤+Y X P ,由于事件}1{≤+Y X 包含三个基本事件,所以{1}{00}{01}{10}1225,9999P X Y P X y P X Y P X Y +===+==+===++=,,,≤即第三个邮筒里至少有一封信的概率为95.3.1.3 二维连续型随机变量及其分布定义3 设二维随机变量()X Y ,的分布函数为()F x y ,,如果存在非负可积的二元函数(,)f x y ,使得对任意实数y x 、,有()()d d y x F x y f u v u v -∞-∞=⎰⎰,,, (3.5)则称()X Y ,为二维连续型随机变量,函数()f x y ,称为二维随机变量()X Y ,的概率密度函数,简称概率密度,或称为随机变量X 和Y 的联合概率密度函数,简称联合密度.由定义,联合密度()f x y ,具有以下性质:(1)()0(,)f x y x y -∞<<+∞-∞<<+∞,≥;(2)()d d 1f x y x y +∞+∞-∞-∞=⎰⎰,;(3)若()f x y ,在点()x y ,处连续,则有2()()F x y f x y x y∂=∂∂,,; (4)设D 是xoy 平面上任一区域,则随机点(,)X Y 落在D 内的概率为{()}()d d DP X Y D f x y x y ∈=⎰⎰,,. (3.6)可以证明,如果一个二元函数()f x y ,同时满足性质(1)和(2),则它一定是某个二维连续型随机变量的概率密度.从几何的角度来看,概率{()}P X Y D ∈,等于以D 为底,以曲面()Z f x y =,为顶的曲顶柱体的体积.例2 设二维随机变量(X , Y )的概率密度函数为(23),0,0(,)0,x y ke x y f x y -+⎧>>=⎨⎩其他求(1)常数k ;(2)分布函数F (x ,y );(3){}P Y X ≤.解 (1)由(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰得 230d d /61x y ke x e y k ∞∞--==⎰⎰,所以 6k =.(2) (23)006d d ,0,0(,)(,)d d 0,x yu v xyeu v x y F x y f u v u v -+-∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰其他230,0=0,x y x y --⎧>>⎨⎩(1-e )(1-e ),其他(3) (23)03{}6d d 5x y yP Y X e x y ∞∞-+≤==⎰⎰.例3 设二维随机变量(X , Y )的密度函数为40101,()0xy x y f x y ⎧=⎨⎩,,,,其它.≤≤≤≤ D 为xoy 平面上由x 轴、y 轴和不等式1<+y x 所确定的区域,求{})P X Y D ∈,.解 如图3-3所示,{}(,)()d d DP X Y D f x y x y ∈=⎰⎰,110d 4d x x xy y -=⎰⎰61=图 3-3定义4 二维均匀分布 设D 为平面上面积为A 的有界区域,若(,)X Y 的概率密度为(,)f x y =1,(,)0,x y DA ⎧∈⎪⎨⎪⎩其他 称(,)X Y 在区域D 上服从二维均匀分布,记(,)X Y ~D U .不难证明,若(,)X Y ~D U ,则其取值落在D 内面积相等的任意区域中的概率相等.定义5 二维正态分布 若二维随机变量(X , Y )的概率密度为2211222222112212()()1(,)exp 22(1)21x x y y f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=-⋅-⋅+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭, +∞<<∞-+∞<<-∞y x ,, 其中参数ρσσμμ,,,,2121均为常数,且10021<>>ρσσ,,,则称()X Y ,服从参数为2121σσμμ,,,及ρ的二维正态分布,记作221212()~(X Y N μμσσρ,,,,,).图 3-4 二维正态分如图3-4所示,二维正态分布以12μμ(,)为中心,在中心附近具有较高的密度,离中心越远,密度越小,这与实际中很多现象相吻合.3.2 边缘分布3.2.1 边缘分布函数与边缘分布密度对于二维随机变量()X Y ,,其分量X 和Y 都是随机变量,也有它们各自的概率分布. 记X 和Y 的分布函数为)(x F X 和)(y F Y ,分别称它们为二维随机变量()X Y ,关于X 和关于Y 的边缘分布函数. 边缘分布函数可以由()X Y ,的联合分布函数)(y x F ,来确定:{}{}()()X F x P X x P X x Y F x ==<+∞=+∞,,≤≤ (3.7) {}{}(),(,)Y F y P Y y P X Y y F y ==<+∞=+∞≤≤ (3.8) 对于二维离散型随机变量()X Y ,,设其概率分布为{}.21Λ,,,,,====j i p y Y x X P ij j i 则X 的边缘分布律为{}{}{}{}12,,,i i i i j P X x P X x Y y P X x Y y P X x Y y ====+==++==+L L.1,12.ij i j p p i ∞===∑@L ,, (3.9)且满足.1i ip =∑. 同理,Y 的边缘分布律为:{}{}{}{}12j j j i j P Y y P X x Y y P X x Y y P X x Y y ====+==++==+L L ,,,.1,12.ij j i p p j ∞===∑@L ,, (3.10)且满足.1j jp =∑.例1 设)(Y X ,的概率分布由下表给出,求X 和Y 的边缘分布律.YX -120. 10. 21 0. 3 0. 05 0. 12 0. 15 0 0. 1解 {}{}100-====Y X P X P ,+{}00==Y X P ,+{}20==Y X P ,0.10.200.3=++=.同理可求得:45.01.005.03.0}1{=++==X P ,25.01.0015.0}2{=++==X P ,55.0}1{=-=Y P , 25.0}0{==Y P , }2{=Y P =0. 2.将X 和Y 的边缘分布律列入),(Y X 的联合分布表中,得到下面的表格:Y X -1 0 2.i p1 2 0. 10. 3 0. 15 0. 20. 05 0 00. 1 0. 10. 30.450. 25j p •0. 55 0. 25 0. 2.i p 和.j p 分别是联合分布表中第i 行和第j 列各联合概率之和.对于连续型随机变量()X Y ,,设它的概率密度为),(y x f ,则X 的边缘分布函数为()()()d d x X F x F x f x y y x +∞-∞-∞⎡⎤=+∞=⎢⎥⎦⎣⎰⎰,,,其密度函数为()()()()d X X f x F x F x f x y y +∞-∞''==+∞=⎰,,. (3.11)同理,Y 的密度函数为()()()d Y Y f y F y f x y x +∞-∞'==⎰,. (3.12)通常, )(x f X 和)(y f Y 分别称为()X Y ,关于X 和Y 的边缘密度函数,简称边缘密度①.例2 设随机变量(),X Y 的密度函数为()2,02,01,0,Axy x y f x y ⎧≤≤≤≤=⎨⎩其他试求参数A 的值和X 和Y 的边缘密度.解 根据联合密度函数的性质,有()21202,d d d d 13f x y x y Axy x y A +∞+∞-∞-∞===⎰⎰⎰⎰, 所以32A =. X 的边缘密度函数()(),d X f x f x y y +∞-∞=⎰. 当02x ≤≤时,()12031d 22X f x xy y x ==⎰;当0x >或2x >时,()0X f x =;故()1,0220,X x x f x ⎧≤≤⎪=⎨⎪⎩其他①也称为边缘分布密度函数或边缘分布密度;还称为边缘概率密度函数或边缘概率密度.“边缘”有时也称为“边沿”或“边际”,即为marginal 的中译名.同理可得 ()23,010,Y y y f y ⎧≤≤=⎨⎩其他例3 设二维随机变量(),X Y 在区域()}{,|01,0D X Y x y x =≤≤≤≤服从均匀分布,求X 和Y 的边缘概率密度。
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故:()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。