第一讲无简并定态微扰论及应用
- 格式:ppt
- 大小:353.00 KB
- 文档页数:30
第五章 微扰理论本章介绍:在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能严格求解的情况不多(一维谐振子,氢原子)。
因此,引入各种近似方法就显得非常重要,常用的近似方法有微扰论,变分法,WKB (半经典近似),Hatree-Fock 自恰场近似等。
本章将介绍微扰论和变分法。
本章将先讨论定态微扰论和变分法,然后再讨论含时微扰以及光的发射和吸收等问题。
§5.1 非简并定态微扰论 §5.2 简并定态微扰论§5.3 氢原子的一级Stark 效应§5.4 变分法§5.5 氦原子基态§5.6 含时微扰§5.7 跃迁几率和黄金费米规则§5.8 光的发射与吸收§5.9 选择定则附录: 氦原子基态计算过程非简并定态微扰论本节将讨论体系受到外界与时间无关的微小扰动时,它的能量和波函数所发生的变化。
假设体系的哈密顿量不显含时间,能量的本征方程ˆH E ψψ= 满足下列条件: ˆH 可分解为 0ˆH 和 ˆH '两部分,而且 0ˆH 远大于ˆH'。
00ˆˆˆˆˆ H H H H H ''=+ 0ˆH 的本征值和本征函数已经求出,即 0ˆH 的本征方程(0)(0)(00ˆn n n H E ψψ=中,能级(0)n E 和波函数(0)n ψ都是已知的。
微扰论的任务就是从0ˆH 的本征值和本征函数出发,近似求出经过微扰ˆH ' 后,ˆH 的本征值和本征函数。
3. 0ˆH 的能级无简并。
严格来说,是要求通过微扰论来计算它的修正的那个能级无简并的。
例如我们要通过微扰计算ˆH '对 0ˆH 的第n 个能级(0)n E 的修正,就要求(0)nE 无简并,它相应的波函数只有(0)n ψ一个。
其他能级既可以是简并的,也可以是无简并的。
4. 0H 的能级组成分离谱。
严格说来,是要求通过微扰来计算它的修正的那个能级(0)n E 处于分离谱内,(0)n ψ是束缚态。
量子力学井孝功答案【篇一:量子力学教学大纲2012.2】>课程名称:量子力学(quantum mechanics)《量子力学》教学大纲课程类别适用专业专业基础课物理学,电子科学与技术开课学期6学分4总学时68理论学时68与其他课程的联系:本课程的先修课程有《数学物理方法》、《原子物理学》建议教材主要参考书周世勋编,陈灏修订高等教育出版社《量力力学教程》,高等教育出版社 [1] 《量子力学》井孝功哈尔冰工业大学出版社[2] 《量子力学》张永德科学出版社[3] 《量力力学教程》曾谨言编科学出版社,2003年。
一、课程的性质、地位和任务量子力学是近代物理学的两大支柱之一,是描述微观世界运动规律的基本理论。
凡是实际涉及微观粒子(比如原子、分子、电子等)的各门学科及新兴技术,都必须掌握量子力学。
量子力学也是高等师范学校物理系各专业的基础理论课,是在普通物理学的基础上阐述量子力学的基本概念和基本理论。
量子力学是从事当代科学和技术研究的基础之一。
本课程讲授量子力学的基本概念、理论和数学方法。
要求学生熟悉量子理论的物理图像,掌握基本概念,能应用相应的数学方法求解简单的量子体系(如一维问题、中心力场等),同时为后续的专业课程学习打下坚实的量子物理基础。
二、课程章节的教学内容及学时分配1、教学内容第一章绪论 (4学时)第一节经典物理学的困难第二节光的波粒二象性第三节原子结构的玻尔理论第四节微粒的波粒二象性第二章波函数和薛定谔方程(10学时)第一节波函数的统计解释第二节态迭加原理第三节薛定谔方程第四节粒子流密度和粒子数守恒定律第五节定态薛定谔方程第六节一维无限深势阱第七节线性谐振子第八节势垒贯穿第三章量子力学中的力学量(16学时)第一节表示力学量的算符第二节动量算符和角动量算符第三节电子在库仑场中的运动第四节氢原子第五节厄密算符本征函数的正交性第六节算符与力学量的关系第七节算符的对易关系两力学量同时有确定值的条件测不准关系第八节力学量平均值随时间的变化守恒定律第四章态和力学量的表象(10学时)第一节态的表象第二节算符的矩阵表示第三节量子力学公式的矩阵表述第四节幺正变换第五节狄喇克符号第六节线性谐振子与占有数表象第五章微扰理论(10学时)第一节非简并定态微扰理论第二节简并情况下的微扰理论第三节氢原子的一级斯塔克效应第四节变分法第五节氦原子基态(变分法)第六节与时间有关的微扰理论*第七节跃迁几率*第八节光的发射和吸收*第九节选择定则第六章散射(自学)第一节碰撞过程散射截面第二节辏力场中的弹性散射(分波法)第三节方形势阱与势垒所产生的散射第四节玻恩近似第五节质心坐标系与实验室坐标系第七章自旋与全同粒子(16学时)第一节电子自旋第二节电子的自旋算符和自旋函数第三节简单塞曼效应第四节两个角动量的耦合第五节光谱的精细结构第六节全同粒子的特性第七节全同粒子体系的波函数泡利原理第八节两个电子的自旋函数 *第九节氦原子(微扰法)*第十节氢分子(海特勒-伦敦法)化学键第八章量子力学若干进展(2学时)第一节朗道能级第二节阿哈罗诺夫-玻姆效应第三节贝利相位 2、学时分配三、教学章节教学目的、基本内容要求、重点和难点第一章绪论1、教学目的通过本章的学习,使学生了解量子力学建立的必要性和基础,了解量子力学在有关学科中的应用。
原子物理与量子力学Atomic Physics and Quantum Mechanics哈尔滨理工大学应用科学学院应用物理系相关说明一、课程名称原子物理与量子力学二、计划学时108(每周3次6学时)三、课程性质技术基础课四、适用专业应用物理学、材料物理学、光信息科学与技术、电子科学与技术五、主要内容本课程内容主要可分为两大部分:1、原子物理学;2、量子力学。
原子物理学主要介绍原子物理学的发展。
从光谱学、X射线等方面的实验事实总结出能级规律,进一步分析原子结构的特点。
量子力学是二十世纪初建立起来的一门崭新的学科。
通过五个基本原理的引入,逐步构筑了量子力学的理论框架。
教学过程中,尽可能将两部分的相关内容结合讲授,利于学生理解和吸收。
原子物理学与量子力学是物理类学生的理论基础。
通过该课程的学习,学生应掌握有关原子等微观粒子的基本物理概念及反映其物理性质的基本规律,使学生了解和掌握现代一些重要的物理观念,并为应用技术准备理论基础。
六、教材与参考书《原子物理学》,褚圣麟,高教出版社《量子力学教程》,周世勋,高教出版社七、备注本课程采用多媒体教学,重点难点等采用特定的文字表现方式或动画声音等形式体现,可在“《原子物理与量子力学》课件”的相关章节观察效果。
目录绪论 (1)本章小结 (1)第一章原子的基本状况 (2)§1.1 原子的质量和大小 (2)§1.2 原子的核式结构 (2)本章小结 (3)第二章原子的能级和辐射 (4)§2.1 原子光谱的一般情况与氢原子光谱 (4)§2.2 经典理论的困难和光的波粒二象性 (4)§2.3 玻尔氢原子理论 (5)§2.4 类氢体系光谱 (5)§2.5 夫兰克-赫兹实验 (5)§2.6 量子化通则 (6)§2.7 电子的椭圆轨道 (6)§2.8 史特恩-盖拉赫实验与原子空间取向的量子化 (7)§2.9 量子理论与经典理论的对应关系对应原理 (7)本章小结 (7)第三章量子力学的运动方程—Schrödinger方程 (8)§3.1 物质的波粒二象性 (8)§3.2 波函数的统计解释 (8)§3.3 态叠加原理 (9)§3.4 薛定谔方程 (9)§3.5 几率守恒定律与定态薛定谔方程 (9)§3.6 一维无限深势阱 (10)§3.7 势垒贯穿 (10)§3.8 线性谐振子 (10)§3.9 电子在库仑场中的运动 (11)§3.10 氢原子 (11)本章小结 (12)第四章量子力学中的力学量 (13)§4.1 力学量算符 (13)§4.2 动量算符与角动量算符 (13)§4.3 厄密算符的本征函数 (14)§4.4 力学量的取值分布 (14)§4.5 算符的对易关系 (14)§4.6 测不准关系 (15)§4.7 守恒定律 (15)本章小结 (16)第五章碱金属原子的光谱和能级 (17)§5.1 碱金属原子的光谱和结构特点 (17)§5.2 碱金属原子光谱的精细结构 (17)§5.3 电子自旋与轨道运动的相互作用 (18)§5.4 单电子跃迁的选择定则 (18)*§5.5 氢原子光谱的精细结构与蓝姆移动 (18)本章小结 (19)第六章多电子原子 (20)§6.1 氦与第二族元素的光谱和能级 (20)§6.2 具有两个价电子的原子态 (20)§6.3 泡利原理与同科电子 (21)§6.4 复杂原子光谱的一般规律 (21)§6.5 辐射跃迁的普适选择定则 (21)§6.6 He-Ne激光器 (22)本章小结 (22)第七章磁场中的原子 (23)§7.1 原子的磁矩 (23)§7.2 外磁场对原子的作用 (23)§7.3 史特恩-盖拉赫实验的结果 (23)§7.4 顺磁共振 (24)*§7.5 物质的磁性 (24)§7.6 塞曼效应 (25)本章小结 (25)第八章原子的壳层结构 (26)§8.1 元素性质的周期性 (26)§8.2 原子的电子壳层结构 (26)§8.3 原子基态的电子组态 (26)本章小结 (27)第九章X射线 (28)§9.1 X射线的产生及测量 (28)§9.2 X射线的发射谱及相关能级 (28)*§9.3 X射线的吸收和散射 (28)*§9.4 X射线在晶体中的衍射 (29)本章小结 (29)第十章态和力学量的表象 (30)§10.1 态的表象 (30)§10.2 算符的矩阵表示 (30)§10.3 量子力学公式的矩阵表述 (31)§10.4 幺正变换 (31)§10.5 狄拉克符号 (31)§10.6 占有数表象 (32)本章小结 (32)第十一章微扰理论 (33)§11.1 非简并定态微扰理论及其应用 (33)§11.2 简并情况下的微扰理论及其应用 (33)§11.3 变分法与氦原子基态 (34)§11.4 与时间有关的微扰理论 (34)§11.5 跃迁几率 (34)§11.6 光的发射与吸收 (35)*§11.7 选择定则 (35)本章小结 (36)第十二章散射 (37)§12.1 碰撞过程与散射截面 (37)§12.2 中心力场中的弹性散射(分波法) (37)本章小结 (37)第十三章自旋与全同粒子 (39)§13.1 电子的自旋 (39)§13.2 电子自旋的描述 (39)§13.3 简单塞曼效应 (40)§13.4 角动量的耦合及应用 (40)§13.5 光谱的精细结构 (41)§13.6 全同粒子体系 (41)§13.7 全同粒子体系的波函数 (41)§13.8 两个电子的自旋函数 (42)本章小结 (42)绪论绪论本章主要介绍原子物理与量子力学的发展过程,并指出学习新理论应注意的问题。
§5.1 非简并定态微扰理论重点:微扰的条件,微扰能量二级修正的求解(一)基本方程假设体系的哈密顿算符H不显含时间,所以体系有确定的能量,而且可分为两部分:一部分是,表示体系未受微扰的哈密顿算符;另一部分是,是加于上的微扰(5.1-1)以和表示的本征函数与相应的本征值,对未受扰的体系,薛定谔方程(5.1-2)的解是已知的,对于被微扰的体系有(5.1-3a)即(5.1-3b)(5.1-4)并在最后运算结果令,利用(5.1-4),则(5.1-3b)可写成(5.1-5)、E n都和微扰有关,可把它们看作是表征微扰程度参数的函数,将它们展为由于的幂级数。
(5.1-6)(5.1-7)式中、依次是体系未受微扰时的能量和波函数,称为零级近似能量和零级近似波函数,和是能量和波函数的一级修正,等等。
将(5.1-6),(5.1-7)式代入(5.1-5)式中,得(5.1-8)同次幂的系数应相等,由此得到下面一系列方程:空虚等式两边(5.1-9)(5.1-10)(5.1-11)将省去,为此在(5.1-4)式中令,得出,故可把,把,理解为能量和波函数的一级修正。
(二)一级微扰(1)能量的一级修正为了求,以左乘(5.1-10)式两边,并对整个空间积分(5.1-12)注意是厄密算符,是实数,则上式左边(5.1-13)于是由(5.1-12)式,注意到的正交归一性,得到(5.1-14)即能量的一级修正值等于在态中的平均值。
(2)波函数的一级修正已知,由(5.1-10)式可求得。
为此我们将按的本征函数系展开(5.1-15)在上式中,若决定,便可求得。
为此,将上式代入(5.1-10)式,并注意,得以左乘上式两边后,对整个空间积分,并注意到的正交归一性:得到(5.1-16)令(5.1-17)称为微扰矩阵元,于是由(5.1-16)式可得(5.1-18)代入(5.1-15)式,得(5.1-19)上式求和号上角加撇表示求和时除去m=n的项。
陇东学院物理学专业课程标准《量子力学》说明说明1.课的性质课的性质量子力学是物理本科专业必修的一门理论基础课程。
量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。
本课程的作用是使学生掌握量子力学的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。
2.教学目的教学目的(1)使学生了解微观客体矛盾的特殊性和运动的规律性,初步掌握量子力学的基本原理和方法,以完备学生对物理规律的认识,为进一步学习、钻研打下必要的基础。
(2)使学生了解量子力学在物理学中的地位、作用和在近代物理中的广泛应用,加深和扩大学生在普通物理中学过的有关内容,以适应中学物理教学的需要,并能独立解决中学教学中所遇到的有关量子力学问题。
(3)以辩证唯物主义为指导,分析、阐述量子力学的建立过程,并使学生了解人类对微观客体的认识是一个逐步深化的过程。
通过学习,培养学生辩证唯物主义世界观、独立分析和解决问题的能力。
3.教学方法教学方法::课堂讲授为主。
4.总学时总学时::54545.教学内容第一章:绪论绪论((总课时总课时::4)要求和说明要求和说明::通过本章的学习,使学生了解量子物理学发展简史,量子力学的研究对象及其特点;掌握微观粒子的波粒二象性。
第一节:经典物理学的困难(课时:1)(1)十九世纪末经典物理学所暴露出来的困难。
(2)量子力学的建立过程。
(3)量子力学的研究对象。
第二节:光的波粒二象性(课时:1)(1)光的波动性。
(2)光的粒子性。
第三节:原子结构的玻尔理论(课时:1)(1)氢原子的光谱规律。
(2)卢瑟福原子核式结构及其缺陷。
(3)原子结构的玻尔理论。
(4)玻尔、索末菲理论的缺陷。
第四节:微观粒子的波粒二象性(课时:1)(1)德布罗意假说。
(2)电子衍射实验。
(3)微观粒子的波粒二象性。
第二章:波函数和薛定谔方程波函数和薛定谔方程((总课时总课时::1010))要求和说明要求和说明::通过本章的学习,应使学生掌握波函数的物理意义,薛定谔方程建立的过程及简单的应用。
§5.1 非简并定态微扰理论重点:微扰的条件,微扰能量二级修正的求解(一)基本方程假设体系的哈密顿算符H不显含时间,所以体系有确定的能量,而且可分为两部分:一部分是,表示体系未受微扰的哈密顿算符;另一部分是,是加于上的微扰(5.1-1)以和表示的本征函数与相应的本征值,对未受扰的体系,薛定谔方程(5.1-2)的解是已知的,对于被微扰的体系有(5.1-3a)即(5.1-3b)(5.1-4)并在最后运算结果令,利用(5.1-4),则(5.1-3b)可写成(5.1-5)、E n都和微扰有关,可把它们看作是表征微扰程度参数的函数,将它们展为由于的幂级数。
(5.1-6)(5.1-7)式中、依次是体系未受微扰时的能量和波函数,称为零级近似能量和零级近似波函数,和是能量和波函数的一级修正,等等。
将(5.1-6),(5.1-7)式代入(5.1-5)式中,得(5.1-8)同次幂的系数应相等,由此得到下面一系列方程:空虚等式两边(5.1-9)(5.1-10)(5.1-11)将省去,为此在(5.1-4)式中令,得出,故可把,把,理解为能量和波函数的一级修正。
(二)一级微扰(1)能量的一级修正为了求,以左乘(5.1-10)式两边,并对整个空间积分(5.1-12)注意是厄密算符,是实数,则上式左边(5.1-13)于是由(5.1-12)式,注意到的正交归一性,得到(5.1-14)即能量的一级修正值等于在态中的平均值。
(2)波函数的一级修正已知,由(5.1-10)式可求得。
为此我们将按的本征函数系展开(5.1-15)在上式中,若决定,便可求得。
为此,将上式代入(5.1-10)式,并注意,得以左乘上式两边后,对整个空间积分,并注意到的正交归一性:得到(5.1-16)令(5.1-17)称为微扰矩阵元,于是由(5.1-16)式可得(5.1-18)代入(5.1-15)式,得(5.1-19)上式求和号上角加撇表示求和时除去m=n的项。
《量子力学》课程教学大纲课程英文名称:Quantum Mechanics课程简介:本课程为专业基础课。
通过该课程的学习,学生可以掌握量子力学的基本理论与基本方法,能提高本科生分析和解决实际物理问题的能力,为本科生后续的专业课程学习和今后的实际工作奠定一定的理论基础,并掌握初步的解决问题方法。
让学生掌握描述量子力学的一些基本量子思想和量子理论方法。
这些内容将为今后本科生在固体物理学、磁性物理学、凝聚态物理等理论方面的进一步学习奠定一定的理论基础,并可以使本科生初步掌握分析问题和解决问题的方法。
一、课程教学内容及教学基本要求第一章绪论本章重点:1)介绍量子力学的产生背景时要说明提出问题和解决问题的条件:社会的需求、科学技术的水平、人们的前期努力和成就等等,用历史唯物主义的观点看待问题。
介绍杰出的人物的工作和贡献时同样应注意突出重点,兼顾全面的原则,从科学史的角度考察,借以获得更多的教益。
2)要着重注意介绍德布罗意假设、波粒二象性的概念,借以初步认识微观客体运动的特殊性和唯物主义思想的指导作用;介绍相应的实验验证和实践应用,认识理论和实践的关系。
3)使学员能从较宽广的角度认识量子力学的地位和作用,增强学习自觉性。
同时初步了解学科的特点,对下一步的学习有相应的准备。
难点:康普顿散射的推导及理解,微观粒子的波粒二象性。
第一节经典物理学的困难(之一:黑体辐射问题和Plank量子论)本节要求:理解:黑体辐射问题中经典理论所遇到的困难和Plank量子论。
掌握:Plank 量子论(重点:考核概率50%)。
1 黑体辐射问题中经典理论所遇到的困难(维恩公式、瑞利-金斯公式)。
2 Plank的电磁辐射能量量子化的思想,并推导Plank的黑体辐射公式,理解并掌握Plank 的能量量子化的假设。
第二节经典物理学的困难(之二:光电效应与爱因斯坦的光量子论;之三:A.Einstein光量子论在Compton效应的解释)本节要求:掌握:光电效应概念(脱出功A的概念、光电流等);爱因斯坦的光量子论解释光电效应;Compton效应概念;A.Einstein光量子论在Compton效应的解释(重点:考核概率100%);理解:在微观单个碰撞事件中能量动量守恒定律仍然成立)。
简并和非简并定态微扰统一理论与能量二级
修正公式
1简单并和非简单并定态的微扰理论
微扰理论是物理上最重要的框架,用来研究量子多体系统的结构和性质。
简单和非简单并定态的微扰理论是用来描述不可能的多原子系统的极端的应用。
它们的重要性在于能够提供一条整合多种量子效应的清楚的理论框架。
2简单并和非简单并定态微扰统一理论
简单并和非简单并定态的微扰理论是一个统一理论,用来描述在量子多体系统中发生的各种效应。
它使用一般的有效势来说明系统的性质,并预测结果。
它也包含有第一性原理,基准状态,以及不同形式的高阶内部势。
简单并和非简单并定态的微扰理论通过集中许多低能量的可解象的状态而形成的,认为它能够获得较低的能量,而且也能够提供更精确的描述。
3能量二级修正公式
能量二级修正公式是根据简单并和非简单并定态微扰理论建立起来的公式。
它使用一系列数学符号来表示量子系统的位置和力应力,以及它们之间的关系。
它的核心是一种叫做单自由维度的方法,用来对多体系统的有效势进行无穷展开,从而发现能量级修正的效应。
经
过此种修正,结果可以优化到更高的能量水平,从而更好地描述多原子系统的性质。
4结论
简单并和非简单并定态的微扰理论和能量二级修正公式是用来描述量子多体系统的重要框架。
它们统一了许多量子效应,提供了较低的能量水平,以及更可靠的结果。
它们对于更好地描述和预测多体系统的性质至关重要。
第四章定态微扰论量子力学体系的哈密顿算符H 不是时间的显函数时,通过求解定态薛定谔方程,讨论定态波函数。
除少数特例外,定态薛定谔方程一般很难严格求解,这样近似方法在量子力学中就显得十分重要。
主要介绍两种应用最广的近似方法:微扰论和变分法。
微扰论是各种近似方法中最基本的一种,它的许多结果几乎成为量子力学理论的组成部分,是本章学习的重点;变分法特别适用于研究体系的基态。
两种方法配合使用可以得出精确度较高的结果。
1定态微扰论求解定态薛定谔方程H E (1)时,若可以把不显函时间的 H 分为大、小两部分HH(0) H |H(0) | |H | (2)其中(1) H (0) 的本征值 E n(0)和本征函数n(0 )是可以精确求解的,或已有确定的结果H (0 ) ( 0) (0 ) (0 )(3)nE n n( 2) H 很小,称为加在 H ( 0) 上的微扰,有时为了表达这种微扰的程度,常引入一个很小参数( 0 1),将微扰写成H下面以分离谱为例,分两种情况进行讨论。
1.1 非简并态微扰论(1)微扰对非简并态的影响非简并态是指 H (0 )的每一个本征值E n(0 )只有一个本征函数n(0)与之对应,当加上微扰 H时, H (0 )H( 0) ( 0)E n,( 0)n ,即微扰的出现是能级和波函数发生变化。
H ,所以E n n(2)微扰的基本思想就是以逐步近似的精神求解薛定谔方程。
当H H (0) H时,受微扰后的能级和波函数以的幂级数展开E n E n(0 ) E n(1) 2 E n( 2)(0 ) (1) 2 (2)n n n nE n( 0)与n(0 )称为零级近似能量和零级近似波函数,是未受微扰时(4)(5)H (0 )的本征能量和本征函数,也是我们求解微扰问题的必备基本条件,后面各项按的幂次称为一级修正、二级修正、把( 4)、( 5)式代入薛定谔方程( 1)中,得到以的幂次区分的一系列方程( 0) (1) :( H:( H( 0)E n( 0))n(0 )(0 ) (0 ))(1)E n n0 (6)(H E n(1) ) n( 0) (7)( 2): ( H (0 ) ( 0))(2 ) (1))(1) ( 2 ) ( 0)( 8)E n n ( H E n n E n n求解以上方程便可得能量和波函数的一级修正、二级修正、(3)各级修正公式零级近似:由( 6)式可得零级近似即为E n(0 )、n(0) .一级修正:首先将n(1)用n(0 )展开(1) (1) ( 0)( 9)nla l l代表求和项中不包含 l n 项,这是因为(0) 附加在(1 ) 上仍是()式的解。