非简并定态微扰
- 格式:ppt
- 大小:492.50 KB
- 文档页数:26
§5.1 非简并定态微扰理论重点:微扰的条件,微扰能量二级修正的求解(一)基本方程假设体系的哈密顿算符H不显含时间,所以体系有确定的能量,而且可分为两部分:一部分是,表示体系未受微扰的哈密顿算符;另一部分是,是加于上的微扰(5.1-1)以和表示的本征函数与相应的本征值,对未受扰的体系,薛定谔方程(5.1-2)的解是已知的,对于被微扰的体系有(5.1-3a)即(5.1-3b)(5.1-4)并在最后运算结果令,利用(5.1-4),则(5.1-3b )可写成(5.1-5)由于、E n 都和微扰有关,可把它们看作是表征微扰程度参数的函数,将它们展为的幂级数。
(5.1-6)(5.1-7)式中、依次是体系未受微扰时的能量和波函数,称为零级近似能量和零级近似波函数,和是能量和波函数的一级修正,等等。
将(5.1-6),(5.1-7)式代入(5.1-5)式中,得(5.1-8)空虚等式两边同次幂的系数应相等,由此得到下面一系列方程:(5.1-9)(5.1-10)(5.1-11)将省去,为此在(5.1-4)式中令,得出,故可把,把,理解为能量和波函数的一级修正。
(二)一级微扰(1)能量的一级修正为了求,以左乘(5.1-10)式两边,并对整个空间积分(5.1-12)注意是厄密算符,是实数,则上式左边(5.1-13)于是由(5.1-12)式,注意到的正交归一性,得到(5.1-14)即能量的一级修正值等于在态中的平均值。
(2)波函数的一级修正已知,由(5.1-10)式可求得。
为此我们将按的本征函数系展开(5.1-15)在上式中,若决定,便可求得。
为此,将上式代入(5.1-10)式,并注意,得以左乘上式两边后,对整个空间积分,并注意到的正交归一性:得到(5.1-16)令(5.1-17)称为微扰矩阵元,于是由(5.1-16)式可得(5.1-18)代入(5.1-15)式,得(5.1-19)上式求和号上角加撇表示求和时除去m=n的项。
第五章微扰理论经常遇到许多问题,体系哈密顿算符比较复杂,不能精确解,只能近似解,微扰论就是其中一个近似方法,其基本思想是逐级近似。
微扰论方法也就是抓主要矛盾。
如何分?假设本征值及本征函数较容易解出或已有现成解,是小量能看成微扰,在已知解的基础上,把微代入方程同次幂相等((1)(2)(3)①求能量的一级修正(2)式左乘并对整个空间积分能量的一级修正等于在态中的平均值。
②求对波函数一级修正将仍是方程 (2) 的解,选取 a 使展开式不含将上时代入式 (2)以左乘上式,对整个空间积分令上式化简为:③求能量二级修正把代入(3)式,左乘方程(3)式,对整个空间积分左边为零讨论:(1)微扰论成立的条件:(a)可分成,是问题主要部分,精确解已知或易求(b) <<1(2)可以证明例:一电荷为e的线性谐振子受恒定弱电场作用,电场沿x正方向,用微扰法求体系的定态能量和波函数。
【解】是的偶函数利用递推公式波函数的一级修正利用能级移动可以直接准确求出令:§5.2 简并情况下的微扰理论假设是简并的k 度简并已正交归一化代入上式以左乘上式两边,对整个空间积分左边右边不全为零解的条件是由久期方程可得到能量一级修正的k个根由于具有某种对称性,因此不考虑时,能级是k度简并的,考虑后,哈密顿量的对称性破坏,使能级的简并度降低或完全消除。
要确定,需求出,将代入上式,可求出。
§5.3 氢原子的一级斯塔克效应斯塔克(stark)效应:氢原子在外电场作用下所产生的谱线分裂现象。
( 是均匀的,沿z轴)下面研究n=2时的能级分裂现象:n=2,有4个简并度求只有两个态角量子数差 , 时, 矩阵元才不为零和不为零为实的厄密算符带入久期方程没有外电场时,原来简并的能及在一级修正中分裂为三个,兼并部分消除①当时②当时③当时,和为不同时为零的常数。
§5.4 变分法应用微扰论应很小,否则微扰论不能应用,本节所介绍的变分法不受上述条件限制。
简并和非简并定态微扰统一理论与能量二级
修正公式
1简单并和非简单并定态的微扰理论
微扰理论是物理上最重要的框架,用来研究量子多体系统的结构和性质。
简单和非简单并定态的微扰理论是用来描述不可能的多原子系统的极端的应用。
它们的重要性在于能够提供一条整合多种量子效应的清楚的理论框架。
2简单并和非简单并定态微扰统一理论
简单并和非简单并定态的微扰理论是一个统一理论,用来描述在量子多体系统中发生的各种效应。
它使用一般的有效势来说明系统的性质,并预测结果。
它也包含有第一性原理,基准状态,以及不同形式的高阶内部势。
简单并和非简单并定态的微扰理论通过集中许多低能量的可解象的状态而形成的,认为它能够获得较低的能量,而且也能够提供更精确的描述。
3能量二级修正公式
能量二级修正公式是根据简单并和非简单并定态微扰理论建立起来的公式。
它使用一系列数学符号来表示量子系统的位置和力应力,以及它们之间的关系。
它的核心是一种叫做单自由维度的方法,用来对多体系统的有效势进行无穷展开,从而发现能量级修正的效应。
经
过此种修正,结果可以优化到更高的能量水平,从而更好地描述多原子系统的性质。
4结论
简单并和非简单并定态的微扰理论和能量二级修正公式是用来描述量子多体系统的重要框架。
它们统一了许多量子效应,提供了较低的能量水平,以及更可靠的结果。
它们对于更好地描述和预测多体系统的性质至关重要。
量子力学中微扰理论的简单论述摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定潯方程能够严格求解的情况寥寥可数。
因此,引入各种近似方法以求解薛定帶方程的问题就什么重要。
常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。
对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。
关键词:近似方法;非简并定态微扰理论;简并定态微扰理论1非简并定态微扰论 (1)1.1理论简述 (1)1.2 一级微扰1.3二级修正1.4非简并定态微扰的讨论 .................................................2简并定态微扰论 (8)1.5海曼一费曼定理 .......................................................2.1理论简述: (8)2.2 简并定态微扰论的讨论 (10)3结束语 (11)致谢..................................................... 错误!未定义书签。
参考文献 (11)0引言微扰理论是量子力学的重要的理论。
对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。
我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。
这些量子模型都太过理想化,无法适当地描述大多数的量子系统。
应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。
量子力学的微扰理论引用一些数学的微扰理论的近似方法。
当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。
基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。