非简并微扰理论专题
- 格式:ppt
- 大小:478.00 KB
- 文档页数:12
第五章 微扰理论Chapter five perturbation Theory§5-1 非简并定态微扰理论一、体系本征方程nn n E H ψ=ψˆ here '0ˆˆˆH H H+= 二、方程近似解设 +ψ+ψ+ψ=ψ)2()1()0(n n nn+++=)2()1()0(nnnn E E E E))(())(ˆˆ()2()1()0()2()1()0()2()1()0(10 +ψ+ψ+ψ+++=+ψ+ψ+ψ+n n n n n n n n n E E E H H 零阶: )0()0()0(0ˆnn n E H ψ=ψ (零级就是未受微扰情况) (1) 一阶:)0(1)1()1()0(0)ˆ()ˆ(nnn H E E H ψ-=ψ- (2) 二阶:0(0)(2)(1)1(1)(2)(0)ˆˆ()()n n n n n nH E E H E -ψ=-ψ+ψ (3) 三阶:n 阶:…1.能量的一阶修正)1(nE(1)0*0ˆn n n E Hdx ψψ'=⎰conclusion: H ˆ在)0(nψ平均值即能量一阶修正 证明: )0()1()1()1()ˆ()ˆ(nn n n H E E H ψψ'-=- 上式两边和*)0(nψ然后对空间积分⎰⎰-=-τψψτψψd H E d E H n n nn n n)0(1)1()*0()1()0(0)*0()ˆ()ˆ( 左=⎰-τψψd E H n nn)1(*)0()0(0])ˆ[(=0 右=⎰-τψψd H E nnn)0()*0()1('ˆ⎰=τψψd H E nnn)0()*0()1('ˆ 2.波函数的一阶修正)1(n ψ∑-'=m n mn mn E E H )0()0()0()1(0ψψ证明:设(1)(0)n l a ψψ=∑()0()0(H n 是ψ本函)因:)0()1(nn a ψψ∑'=是方程(2)的解则∑+)0()0(na a ψψ也是(2)的解适当选a :消取a n 项 则)0()1(ψψa n '∑=撇“’”表示n ≠代入(2)式0(0)(0)(0)(0)ˆˆ(()n n nH E a E H ψψ''-∑=-) 两边采)*0(m ψ然后空间积分⎰⎰⎰-=ψ∑-τψψτψψτψd H d E d a E H n m n n m n m )0()*0()0()1((*))0()0(0)0('ˆ')ˆ(mn n m H d E E a 'ˆ)(')0()0()0()0(-=-∑⎰τψψmn n m H E E a ')(')0()0(-=-∑δ)0()0()0()0(''mn mnn m mn m E E H E E H a -=--=)0()0()0()1(''mmn mn n E E H ψψ-∑=3.能量二阶修正)2(n E (不讲推导)2200()()()''nmn mn mH E E E =∑-(注:*''m n nm H H m n =≠厄米矩阵)三、conclusion1.设,ˆˆˆ0H H H+=若)0()0('mn mnE E H -〈〈1式'ˆH 很小,且)0()0(m n E E -能级间隔较大则波函数 )2()1()0(n n n n ψ+ψ+ψ=ψ 能级 +++=)2()1()0(n n n n E E E E2.一般情况下能级修正到二阶,波函数修正到一阶(1)能级 1002200'()()*()()()()ˆ||'一级修正二级修正n n nnm nm n mE H dx H EE E ⎧=ψψ⎪⎨=∑⎪-⎩⎰(2)波函数一阶修正)0()0()0()1(''mmn mn mn E E H ψψ-∑= 参原讲义例题例题例题⎪⎭⎪⎬⎫321§5-2 简并的定态微扰理论一、体系的本征方程nn n E H ψ=ψˆ 'ˆˆˆ0H H H += 但in i E H ϕϕ=0ˆ k i ,2,1= (k 重简并) 设 +ψ+ψ+ψ=ψ2)1()0(n n n n +++=2)1()0(n n n n E E E E则()0110()()()()ˆˆ()'n n n nH E E H -ψ=-ψ 一阶方程 二、近似求解1.零阶波函数设001kniii c ψϕ==∑ k i ,2,1=2.久期方程对一阶方程两边同乘*ϕ,后对空间积分⎰ψ-=τϕd E H n n )1()0(0*)ˆ( 左0=⎰ψ-=τϕd H E nn )0()1(*)'ˆ( 右*(1)(0)ˆ(')n i iiE H c d ϕϕτ=-∑⎰10()**()ˆ['] ni i i iE d H d c ϕϕτϕϕτ=∑-⎰⎰(1)(0)[']0n i i iiE H c δ=∑-= (1)(0)(')0i n i iiH E c δ∑-=线性方程组11(1)(0)(0)'(0)111122133(0)'(1)(0)'(0)2112222331(')'02'()0n H E c H c H c H cH E cH c=-+++==+-++=(0)(0)(1)(0)1122'()0k k kk n k kH c H c H E c =+++-=(1)(0)1112131(2)(0)2122132(0)(1)123''''''0''''n n k k k k k n H E H H c H H E H c c H H H k H E ⎛⎫⎡⎤- ⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥ ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭ (1) 齐次线性方程组0'''''''''')0(212)1(222111312)1(11=---nkk k k kn knE H H H H E H H H H H E H 久期方程 (2)三、conclusions1.求解方程(1)就可以得到能量的一阶修正和零阶波函数)0(n ψ2.求解步骤(1)先解久期方程,解出K 个根,若K 个根无重根,简并全部解除,若有重根则部分解除例第n 个能级 k j E E E njn nj 2,1)1()0(=+=)1()0()1(2)0(2)1(1)0(1njn nj n n n n n n E E E E E E E E E +=+=+=(2)将)1()1(2)1(1,nj n n E E E 代入原方程解出)0(i C例)0(1n E 代入可得出一组)0(i C则i ki i nC ψ=ψ∑=1)0()0(§5-3 氢原子的一阶stark 效应一、stark 效应(定义)原子在外电场的作用下,产生谱线分裂的现象叫~二、体系的Hamiltonianr e re H s ⋅+-∇=εμ2222ˆ'ˆˆ0H H+= ˆ'cos H e r e r εεθ=⋅= (设ε 沿Z 方向)三、方程求解 n=21.能量一阶修正003221200200000322221021100322321121110032242112111002rrr r1r (),))()1(),))cos 1r(),))()sin 1r (),))()sin =((((((((a a a i a i R r Y ea a R r Y e a R r Y ee a a R r Y e e a a ϕϕϕθϕϕθϕθϕθϕθϕθϕθ-------=ψ-=ψ==ψ==ψ=1111''*ˆH H d ϕϕτ=⎰⎰⎰ 4242''*ˆH Hd ϕϕτ=⎰⎰⎰ 110'H = 22111111000''**ˆcos sin H H d r dr d d ππϕϕτϕϕϕθθθ∞==⎰⎰⎰⎰⎰⎰20000cos sin sin sin (sin )|1=2d d πππθθθθθθ==⎰⎰ 110'H =01212000211232''*ˆ()()()cos cos sin ra r r H H d e e xa a a r r drd d ϕϕτθεπθθθϕ-==-⨯⎰⎰⎰⎰⎰⎰1!x n n n e x dx αα∞-+=⎰1203'H e a ε=-同理可以求得其他矩阵元0000003003)1(2)1(2)1(2)1(2=------E E E a e a e E εε解行列式方程得:33)1(24)1(23)1(220)1(21==-==E Ea e E a e E εε2.零阶波函数求解(1)0)1(213a e E ε=⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000003000030000330033a e a e a e a e a e a e εεεεεε(0)1(0)2(0)3(0)4c c c c ⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭=0 解得到 (0)(0)340c c ==(0)(0)12c c =- ∴ (0)(0)(0)(0)211122i i icc c ϕϕϕψ==+∑(0)(0)1112c c ϕϕ=- (0)(0)12001210c c =ψ-ψ⎰=ψψ1)0(21*)0(21τd 得(0)1c = 由此得零级近似波函数为:)(21210200)0(21ψ-ψ=ψ∴同理 12203()E e a ε=-当解出:000034120()()()()c c c c === 由此得零级近似波函数为:)(21210200)0(22ψ+ψ=ψ1122()()340 E E =当=时解出: 010*********0300000000()()()()00 0 0 0=c e a c e a c c εε⎛⎫-⎛⎫ ⎪⎪- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭00000()()()()1234 和为不同时等于零的常数。
多体系统中的微扰理论简介引言:多体系统是指由多个粒子组成的系统,其中每个粒子都与其他粒子相互作用。
研究多体系统的行为和性质是理论物理学的重要课题之一。
微扰理论是一种常用的方法,用于描述多体系统中微小扰动引起的变化。
本文将简要介绍多体系统中的微扰理论。
一、微扰理论的基本思想微扰理论是一种近似方法,通过将系统的哈密顿量分解为一个已知的简单系统和一个微小的扰动,来研究系统的性质。
基本思想是将扰动项视为小量,通过级数展开的方式求解。
微扰理论在量子力学、统计物理学等领域有广泛应用。
二、微扰理论的形式表达微扰理论的形式表达通常采用级数展开的形式,可以通过求解一系列的微扰项来逐步逼近真实的系统。
一般而言,微扰理论可以分为非简并微扰理论和简并微扰理论两种情况。
1. 非简并微扰理论非简并微扰理论适用于系统的能级不发生简并的情况。
在这种情况下,通过将扰动项加入到系统的哈密顿量中,可以得到一系列的修正能级。
通过逐阶计算修正能级,可以得到系统的能级结构的近似解。
2. 简并微扰理论简并微扰理论适用于系统的能级发生简并的情况。
在这种情况下,需要通过对简并子空间进行对角化来求解系统的能级结构。
简并微扰理论中,还存在一阶微扰和高阶微扰的概念,通过求解一系列的微扰项,可以得到系统能级的修正。
三、微扰理论的应用微扰理论在物理学的各个领域都有广泛的应用。
以下是一些常见的应用领域:1. 量子力学中的微扰理论微扰理论在量子力学中有广泛应用,用于求解各种系统的能级结构。
例如,氢原子中电子的自旋-轨道耦合问题可以通过微扰理论求解。
2. 统计物理学中的微扰理论统计物理学中的微扰理论可以用于求解复杂系统的平均性质。
例如,通过微扰理论可以计算气体的压强、磁化率等宏观性质。
3. 固体物理学中的微扰理论微扰理论在固体物理学中也有重要应用。
例如,可以通过微扰理论来计算固体中电子的能带结构和输运性质。
结论:微扰理论是一种重要的近似方法,用于描述多体系统中微小扰动引起的变化。
一. 选择题114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)B A.E H H E E n nn mn nmm()()()''0200++-∑. B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑. D.E H H E E nnn mn mnm()()()''0200++-∑. 115. 非简并定态微扰理论中第n 个能级的一级修正项为B A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为BA.H EE mnnmm'()()200-∑. B.''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为BA.H EE mnnmmm '()()()000-∑ψ. B.''()()()H E E mn nmm m000-∑ψ.C. ''()()()H E E mnm n m m 000-∑ψ. D. H EE mnm n m m '()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为BA. H d dx x q x =-++ 22222212μμωε. B. H d dx x q x =-++ 2222212μμωε. C. H d dx x q x =-+- 2222212μμωε. D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是AA.H E E mkkm'()()001-<<. B. H E E mkkm'()()001+<<. C. H mk '<<1. D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场ε中,则该体系的哈密顿为AA.ε ⋅+=D I L H 2ˆˆ2.B. ε ⋅+-=D I L H 2ˆˆ2.C. ε⋅-=D I L H 2ˆˆ2. D. ε ⋅--=D I L H2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为BA.ψψψn nnmn mmmHE E=+-∑()()()()''00. B.ψψψn nmnn mmmHE E=+-∑()()()()''00.C.ψψψn nmnm nmmHE E=+-∑()()()()''00. D.ψψψn nnmm nmmHE E=+-∑()()()()''00.122.氢原子的一级斯塔克效应中,对于n=2的能级由原来的一个能级分裂为BA. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态Φk跃迁到终态Φm的几率为AA.22')'exp('1⎰t mkmkdttiHω. B.2')'exp('⎰t mkmkdttiHω.C.22')'exp(1⎰t mkmkdttiHω. D.2')'exp(⎰t mkmkdttiHω.124.用变分法求量子体系的基态能量的关键是BA. 写出体系的哈密顿. B选取合理的尝试波函数.C 计算体系的哈密顿的平均值. D体系哈密顿的平均值对变分参数求变分.二.填空题1.可精确求解的体系叫做,待求解的体系叫做未微扰体系微扰体系2.假定H可以划分为两部分,H为H的基本部分并且其定态问题可精确求解,称为参考系3.将系统H的态ψ相对于未受扰动的参考系态{})0(n(设定它们是完备的)作展开为∑=nc n c )0(ψ4.在一阶微扰论近似下,能量的修正量为H '在未受扰动态)0(m 中的 平均值5. .在一阶微扰论近似下,在扰动后的态中,别的态)()0(m k k ≠也将混入,混入的概率幅正比于扰动算符H '在)0(k和)0(m 态之间的 ,反比于两态之间的矩阵元 能量差)0()0((km E E - 6.如果未受扰动系统0H 包括连续谱,那么态m 的表达式应该扩充为dv v E E H k E E H m m vm vm kk m km )0()0()0()0()0()0()0(⎰∑-'+-'+= 7.一阶微扰论中有一个常用的公式,它是计算算符Ω矩阵元的公式,其表达式为∑∑∑∑≠≠≠≠-'Ω+-Ω'+Ω≈⎭⎬⎫⎩⎨⎧+Ω⎭⎬⎫⎩⎨⎧+≈Ωm l lm lm nl n k k n km nk nm m l l n k k E E H E E H l c m k c n m n )0()0()0()0()0()0()0()0()1()0()0()1()0( 8.氢原子精细结构修正主要来自相对论效应9.电子并非经典质点,在相对论效应下,其位置在 波长c λ 的范围内随机振颤。
分类号编号毕业论文题目非简并定态微扰理论学院物理与信息科学学院姓名崔骁专业物理学学号271040106研究类型研究综述指导教师方玉田提交日期原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。
学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。
除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。
本声明的法律责任由本人承担。
论文作者签名:年月日论文指导教师签名:目录正文 ................................................................... .11 引言 .................................................. 错误!未定义书签。
2 非简并定态微扰理论 .................................... 错误!未定义书签。
2.1 理论定义 (1)2.1 非简并 (1)2.1.2定态 (1)2.2理论推导 (2)2.2.1一级近似计算 (3)2.2.2二级近似计算 (4)2.2.3三级近似计算 (7)3 能量和波函数的修正关系 (9)5 参考文献 (10)非简并定态微扰理论崔骁(天水师范学院物理与信息科学学院,甘肃天水 741000)摘要采用逐级近似的方法,求解非简并定态微扰理论能量和波函数的修正,能量和波函数分别修正计算至三级,并找出了能量逐级修正和波函数逐级修正之间的关系。
关键词非简并;定态微扰理论;逐级近似;能量修正;波函数修正Non-degenerate Stationary Perturbation TheoryCui xiao(College of Physics and Information Science,Tianshui Normal University,Tianshui Gansu 741001)Abstract:Using the method of Progressive approximation to solve Energy level correction and Wave function in non-degenerate Stationary Perturbation Theory, energy and wave function were modified computing to level 3, and find out the relationship between Energy level correction and Wave function correction.Key words: Non-degenerate,Stationary Perturbation Theory,Energy level correction,Wave function correction,Progressive approximation1.引言学习了量子力学的基本理论之后,我们方知以前讨论的一维无限深势阱中的粒子、线性谐振子、势垒贯穿和氢原子等问题,归根到底是解这些体系的哈密顿算符的本征方程(即定态薛定谔方程),从而求出其本征值和本征函数。
102第六章 近似计算方法§6.1 微扰理论 一、非简并定态微扰论 1、定态微扰论的主要思想在量子力学中,当体系的哈密顿算符不显含时间时,属于定态问题,通过解其基本方程:ˆn n nH E Ψ=Ψ 可以求出Hˆ的本征值和本征函数。
如果H ˆ比较复杂,但是如果H ˆ可以写成两部分: H H H ˆˆˆ0′+= (0ˆH 和H ′ˆ都不显含时间),而且满足下列条件:(1)0ˆH 的本征方程:(0)(0)(0)0ˆnn n H E ψψ= 可以精确求解,即n ε和n Φ是已知的。
(2)0ˆH 和H ′ˆ的差别很大,或者说H ′ˆ很小,可以看作0ˆH 的基础上加一个小的微扰H ′ˆ,故H′ˆ称为微扰项。
这样,我们就可以通过微扰理论来近似求解。
(0)(1)(2)n n n n E E E E =+++ (0)(1)(2)n n n n ψψψψ=+++2、定态微扰计算假设微扰时体系的能量是哈密顿算符0ˆH 的第n 个本征值(0)nE ,这个本征值无简并,即体系于定态(0)n ψ。
当体系受到一个与时间无关的微扰H ˆ′作用时,它将处于一个新的能级nE 和状态n Ψ。
n E 和n Ψ是H H H ˆˆˆ0′+=的本征值和本征函数.即满足: ˆn n nH E Ψ=Ψ 微扰论的主要思想:H ˆ′代表一个微小的扰动,那么我们就有理由认为n E 和(0)n E 相差不多,nΨ和(0)n ψ也十分接近。
(1)、非简并能量的一级修正在非简并微扰情况下,由一级微扰确定一级近似波函数和一级能量修正103010010ˆˆn n n nE E H H Ψ′+Ψ=Ψ′+Ψ 两边左乘()*0n Ψ,并对整个空间积分得:()()()()()()()()τττd H d E d E H n n n n n n n n ∫∫∫Ψ′Ψ−ΨΨ=Ψ−Ψ0*00*01100*0ˆˆ 注意到0ˆH 是厄密算符,所以有: ()()()()()()[]0*ˆˆ0001100*0=Ψ−Ψ=Ψ−Ψ∫∫ττd E H d E H n n n n n n 从而得到()()()τd H E nn n 0*01ˆΨ′Ψ=∫ 即()n H n E n′=1 (2)、非简并能量的二级修正令()()()001l ll n a Ψ=Ψ∑得:000ˆˆn n n n nE E E H H Ψ′′+Ψ′′+Ψ′′=Ψ′′+Ψ′′ ()()()()()()()001010010ˆnn n ll l n l l llH E a E a EΨ′−Ψ=Ψ−Ψ∑∑ 将()()n m m ≠Ψ*0左乘上式两边后,对整个空间积分,所以有()()()()mn n m ml ll n ml l lH d H a E a H ′−=Ψ′Ψ−=−∫∑∑τδδ0*01010ˆˆ 其中()()ml l m d δτ=ΨΨ∫0*()()mnm l n H a E E ′=−100 ()01mn mnm E E H a −′=()()0001m mn mn n E E H Ψ−′=Ψ∑左乘()*0n Ψ,并对整个空间积分得104()()()()()()()2111200*0ˆn nl ll n nl ll n n n E a E H a d E H ++′−=Ψ−Ψ∑∑∫δτ 当n l ≠时,利用0ˆH 的厄密性可得 ()∑∑−′=′=ll n nlnlll n E E H H a E 022即()∑−′′=ll n n E E l H n l Hn E 02ˆ(3)、非简并波函数的一级修正(1)'(0)(0)(0)mn n m mn mH E E ψψ′=−∑ 二、简并定态微扰论 1、简并的处理 (1)问题假设(0)n E 是k 度简并的,0ˆH 属于本征值(0)n E 的本征函数有k 个: k φφφ,,,21 ,且它们已经是相互正交的。