确定一次函数表达式
- 格式:ppt
- 大小:232.50 KB
- 文档页数:12
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
4 确定一次函数的表达式学习目标1. 了解两个条件确定一次函数。
2. 能根据所给信息(图像、表格、实际问题等)确定一次函数的表达式。
知识详解1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式。
(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx(k≠0)中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式。
②一次函数y=kx+b(k≠0)有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值。
用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式。
2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数。
(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式。
【典型例题】例1:一次函数图象如图所示,求其解析式.【答案】设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【解析】利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式。
确定一次函数的表达式
求出一次函数的表达式是数学练习题中常见的提问方式,下面介绍一下确定一次函数的表达式的三种方法。
用待定系数法确定一次函数解析式
待定系数法是确定一次函数的表达式最常用的方法,解题步骤包括“一设、二列、三解、四写”,具体内容如下:
1、根据题中所给的已知条件写出含有待定系数的函数关系式;
2、将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
3、解方程得出未知系数的值;
4、将得到的待定系数代回所求的函数关系式中就可以得到该函数的解析式。
用图像平移法确定一次函数表达式
一次函数的图像在平移时的规律为:直线在平移的倾斜率不变,即k的值保持不变。
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k≠0)的图像;当b<0时,把正比例函数y=kx(k≠0)的图像向下平移∣b∣个单位,就得到一次函数:y=kx+b(k≠0)的图像。
根据直线的对称性确定一次函数表达式
关于y轴对称的两条直线为y=kx+b(k≠0)和y=-kx+b
(k≠0);关于x轴对称的两条直线为y=kx+b(k≠0)和y=-kx-b (k≠0);关于原点对称的两条直线为y=kx+b(k≠0)和y=kx-b (k≠0)。
以上为同学们介绍了确定一次函数的表达式的三种方法,同学们都掌握了吗?其中待定系数法的应用是较为广泛的,同学们一定要学好,利用图像来确定一次函数的表达式属于较为灵活的方法,可以用在选择填空中快速确定答案。
三法确定一次函数表达式确定一次函数表达式的方法有三种,分别是点斜式、截距式和一般式。
一、点斜式:点斜式是通过已知直线上一点的坐标和该直线的斜率来确定一次函数表达式的方法。
已知直线上一点的坐标为(x1,y1),斜率为m,则该直线的点斜式表达式为:y-y1=m(x-x1)其中,m为直线的斜率,定义为直线上任意两点的纵坐标之差与横坐标之差的比值。
例如,已知直线上一点的坐标为(2,3),斜率为2,则直线的点斜式为:y-3=2(x-2)二、截距式:截距式是通过已知直线在坐标轴上的截距来确定一次函数表达式的方法。
已知直线与x轴的交点为(a,0),与y轴的交点为(0,b),则该直线的截距式表达式为:x/a+y/b=1其中,a为直线与x轴的截距,b为直线与y轴的截距。
例如,已知直线与x轴的截距为3,与y轴的截距为4,则直线的截距式为:x/3+y/4=1三、一般式:一般式是通过已知直线上两点的坐标来确定一次函数表达式的方法。
已知直线上两点的坐标为(x1,y1)和(x2,y2),则该直线的一般式表达式为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)其中,(x1,y1)和(x2,y2)为直线上的两个点的坐标。
例如,已知直线上两点的坐标分别为(2,3)和(4,7),则直线的一般式为:(y-3)/(x-2)=(7-3)/(4-2)以上三种方法都可以用来确定一次函数表达式,选择使用哪种方法取决于已知的条件。
点斜式适用于已知斜率和一点的情况,截距式适用于已知与坐标轴的截距的情况,一般式适用于已知两点的情况。
根据实际情况选择合适的方法,可以快速准确地确定一次函数表达式。
确定一次函数的表达式确定一次函数表达式主要是确定出正比例函数y=kx 中的k ,以及一次函数y=kx+b 中的k, b 的值。
(一) 自主探究:根据定义确定一次函数表达式。
即利用一次函数y=kx+b 中k ≠0,且自变量x 的次数为“1”确定字母取值。
例1、 已知函数54)3(12-++=+m x m y m 是一次函数,求其解析式。
(二) 辨析研讨:用待定系数法求一次函数表达式。
1.已知一次函数y=kx +5过点P (-1,2),则k =____.2.若一次函数的图象经过点(1,2),则函数的表达式可能是 (写出一个即可).3. 若一次函数的图象经过点(1,2),且与y=2x 平行,求一次函数的表达式。
4. 若一次函数的图象经过点(1,2),(-1,6),求一次函数的表达式。
用待定系数法求一次函数表达式:(1) 定义:先设所求函数关系式(其中含有未知常数,系数)再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法。
其中未知系数也叫待定系数。
(2) 你能说说用待定系数法求一次函数表达式的步骤吗?巩固练习:1.2.如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,求一次函数的表达式。
(三)自主探究:根据问题实际意义直接写出表达式。
1.试试你的身手1、若正比例函数y=kx (k ≠0)经过点(-1,2)则该正比例函数的解析式为 。
2、直线y=kx+b 过点(1,2)且与直线y=x+5平行,则直线的表达式为 。
3、经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是 。
4、已知21y y y +=,其中1y 与x 成正比例,2y 与x-2成正比例,当x=-1时y=2;当x=2时y=5。
求y 与x 的函数关系式。
5、已知一次函数y=kx+b (k ≠0),当x=-4时,y 的值是9;当x=2时,y 的值是-3,求此函数的表达式。
6、已知一次函数的图像经过A(-1,3)和点B (2,-3)。
6.4确定一次函数的表达式
【基础须知】
一、确定一次函数解析式的基本思想
1.由于一次函数的表达式y=kx+b中含有两个字母k和b,因此要确定一个一次函数,即把k和b的值确定下来即可.
2.正比例函数由于图象经过原点,所以只需求出字母k即可.
3.确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件.
二、确定一次函数表达式的步骤
1.设函数表达式y=kx+b;
2.根据已知条件列出关于k,b的方程;
3.解方程;
4.把求出的k,b值代入到表达式中即可.
三、围绕函数,主要有三种类型的运算
1.已知函数解析式及自变量的值,求自变量的值对应的因变量的值.
2.已知函数解析式和因变量的值,反过来求与已知因变量对应的自变量的值.
3.已知函数的类型,和函数的几对对应值(函数图象上几个点的坐标),求函数的解析式.
【重点梳理】
本节的重点是会根据已知条件求正比例函数和一次函数关系式.
【难点再现】
本节的难点是通过函数图象获取信息,发展形象思维.
【例题讲解】
已知直线y=kx+b经过点(1,3)和点(-1,1),求该函数的表达式.
解析:
求一次函数关系式时,通常先设出式子中的未知系数,再根据条件求出未知系数,从而求出这个关系式.
答案:
根据题意k+b=3.①
-k+b=1.②
①-②得,2k=2,
∴k=1.把k=1代入①得b=2.
∴函数关系式为y=x+2.。
确定一次函数的表达式在数学的世界里,一次函数就像是一座桥梁,连接着不同的数量关系。
而确定一次函数的表达式,则是我们能够顺利通过这座桥梁,解决各种实际问题的关键钥匙。
一次函数的一般形式是 y = kx + b(其中 k、b 是常数,k ≠ 0)。
这里的 k 被称为斜率,它决定了函数图像的倾斜程度;b 则是截距,也就是函数图像与 y 轴的交点。
要确定一次函数的表达式,实际上就是要找出 k 和 b 的值。
那怎么来找呢?通常有两种常见的方法:待定系数法和利用函数图像的特征。
先说待定系数法。
假设我们知道一次函数上的两个点的坐标,比如(x₁, y₁)和(x₂, y₂),把这两个点代入函数表达式 y = kx + b 中,就可以得到一个关于 k 和 b 的方程组。
举个例子,如果已知点(1, 3)和(2, 5)在某个一次函数上,那么把(1, 3)代入函数表达式得到 3 = k×1 + b,即 k + b = 3;把(2, 5)代入得到 5 = k×2 + b,即 2k + b = 5。
接下来解这个方程组,就能求出 k 和 b 的值。
从第一个方程 k + b = 3 可以得到 b = 3 k,把它代入第二个方程2k + b = 5 中,就有 2k + 3 k = 5,解得 k = 2。
再把 k = 2 代入 b= 3 k ,得到 b = 1。
所以这个一次函数的表达式就是 y = 2x + 1。
再来说说利用函数图像的特征来确定表达式。
如果我们能从图像中直接看出函数与 y 轴的交点,那这个交点的纵坐标就是 b 的值。
而斜率 k 呢,可以通过图像上任意两个点的坐标来计算。
比如说,函数图像与 y 轴交于(0, -2),并且还经过点(2, 4)。
那么 b =-2,而斜率 k =(4 (-2))÷(2 0)= 3 。
所以这个一次函数的表达式就是 y = 3x 2 。
在实际应用中,确定一次函数的表达式非常有用。
确定一次函数表达式四法一、 定义确定法例1、己知()3221-+-=-k xk y k 是关于x 的一次函数,则这个函数的表达式为二、 待定系数法 例2、若一次函数b kx y +=的图象经过A (一1,一5)B (2,1)两点,求该一次函数的解析式.例3、己知直线b kx y +=与直线x y 3=平行且过点A (1,一5),求该直线的解析式例4、己知一次函数b kx y +=的图象经过A (3,0),且与坐标轴围成的三角形的面积为6,求这个函数的解析式.三、 方程式确定法 .例5、如图Rt △ABC 中,∠C =︒90,BC =6,AC =8,点P 是AC 上一动点AP BC AB PQ ⋅=⋅,P Q ⊥AB 于Q ,设PC =x ,P Q=y 求y 与x 之间的函数关系式,并分别指出x 与y 的取值范围.四、 算式确定法例6、某电信公司手机A 类收费标准是:月租费18元,另外,每通话1分钟收费0.7元.(1) 写出每月应缴费用y 元与通话时间x (分)之间的函数关系式(2) 如果小明的手机10月份通话时间是82分钟,它应缴费多少元?实际问题中一次函数图象例1 两摞相同规格的饭碗整齐地叠放在桌面上,请根据如图1中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y (cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x 的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.例2今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图2所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用 户该月用了多少度电?例3、小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入y (元)与销售重量x (千克)之间成正比例关系.请你根据以上信息解答下列问题:(1)求降价前销售收入y (元)与售出草莓重量x (千克)之间的函数关系式;并画出其函数图象;(2)小强共批发购进多少千克草莓?小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元?图2图1例4、某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm的正方形,现从盒中倒出果汁,盒中剩余果汁的体积y(毫升)与果汁下降高度x(cm)之间的函数关系如图所示(盒子的厚度不计).(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)若将满盒果汁倒出一部分,下降的高度为15cm,剩余的果汁还能够倒满每个容积为180毫升的3个纸杯吗?请计算说明.例5、恩施山青水秀,气候宜人.在世界自然保护区星斗山,有一种雪白的树蟋蟀,人们发现他15秒钟所叫次数与当地温度之间满足一次函数关系.下面是蟋蟀所叫次数与温度变化(1(2)在该地最热的夏天,人们测得这种蟋蟀15秒钟叫了50次,那么该地当时的最高温度大约为多少摄氏度?。