07《大学物理学》恒定磁场练习题(马)
- 格式:doc
- 大小:1.53 MB
- 文档页数:11
第6章 恒定磁场1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的?( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3. 磁场的高斯定理⎰⎰=⋅0S d B 说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。
5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–B8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。
《大学物理学》恒定磁场部分自主学习材料要掌握的典型习题:1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。
建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。
统一积分变量:cot()cot y x x παα=-=-; 有:2csc dy x d αα=;sin()r x πα=-。
则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。
①无限长载流直导线:παα==210,,02IB x μπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。
2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。
建立坐标系Oxy :任取电流元Idl ,P 点磁感应强度大小:204r IdldB πμ=;方向如图。
分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B xx απμ。
统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR rIR ππμ2430⋅=232220)(2x R IR +=μ。
结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。
①当x R >>时,220033224IRI R B xxμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB R Rμμππ==⋅;③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。
B⊗RIdlαOB第③情况也可以直接用毕—沙定律求出:000220444I Idl IRd B R R Rθμμμθθπππ===⎰⎰。
《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。
关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。
【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。
【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。
【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。
【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4小为πR 2c Wb。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。
恒定磁场一、基本要求1、了解电流密度的概念。
2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。
3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。
掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。
4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。
掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。
二、主要内容 1、稳恒电流电流:电荷的定向运动。
电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。
电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。
电流密度是描述电流分布细节的物理量,单位是2/m A 。
电流强度⎰⋅=SS d Iδ。
2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。
磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。
和电场一样,磁场也是一种物质。
3、磁感应强度磁感应强度B是描述磁场性质的物理量。
当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。
B 的大小定义为qvF B max=。
如右图所示。
B 的单位为T (特斯拉)。
4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。
毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。
运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。
几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。
大学物理磁场练习题磁场是大学物理中一个重要的内容,它涉及到电磁学和力学的交叉领域。
学生在学习磁场的过程中,需要通过练习题来巩固自己的知识,并提高解题的能力。
下面我将为大家介绍一些典型的大学物理磁场练习题。
首先,我们来看一个经典的磁场问题:一根长直导线通电,求其周围点的磁场强度。
解决这个问题,我们可以运用毕奥-萨伐尔定律:磁场的大小与电流大小和距离导线的距离有关。
可以通过对导线上不同位置的微小导线段,施加毕奥-萨伐尔定律获得磁场的大小和方向,进而对整根导线上所有微小导线段的贡献进行积分得到领域点的磁场强度。
这个问题是磁场学习的基础,掌握了这个问题,才能够进一步学习相关的问题。
接下来,我们来看一个稍微复杂一些的问题:一个长直导线和一个具有一定长度的线圈放在一均匀磁场中,求导线和线圈所受到的力。
在解决这个问题的时候,我们需要用到洛伦兹力的概念。
导线和线圈通过电流与外界磁场相互作用,产生力的作用。
通过运用洛伦兹力公式,我们可以得到导线和线圈所受到的力的大小和方向。
这个问题与实际生活中的电磁感应有关,掌握了这个问题,可以更好地理解电磁感应现象。
再来看一个旋转电荷和磁场相互作用的问题:一个带电粒子在磁场中做圆周运动,求所受的力和运动轨迹。
在解决这个问题时,我们需要用到洛伦兹力和向心力的概念。
带电粒子在磁场中受到洛伦兹力的作用,使其做圆周运动。
通过洛伦兹力和向心力的平衡关系,我们可以求得带电粒子所受的力的大小和方向,并进而得到运动轨迹。
这个问题与粒子在磁场中的运动有关,是电磁学的一个重要内容。
最后,我们来看一个电磁感应的问题:一个导体棒向磁场中快速移动,求导体棒两端的电势差。
解决这个问题需要用到法拉第电磁感应定律。
当导体棒快速移动时,磁场的变化会产生感应电动势,并使导体棒两端产生电势差。
通过应用法拉第电磁感应定律,我们可以求得导体棒两端的电势差的大小。
这个问题与发电机的原理密切相关,掌握了这个问题,可以更好地理解电磁感应和发电的原理。
《大学物理学》恒定磁场部分自主学习材料要掌握的典型习题:1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。
建立坐标系Oxy ,任取电流元I dl v,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。
统一积分变量:cot()cot y x x παα=-=-; 有:2csc dy x d αα=;sin()r x πα=-。
则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I x μααπ-=。
①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。
2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。
建立坐标系Oxy :任取电流元Idl v,P 点磁感应强度大小:204r IdldB πμ=;方向如图。
分析对称性、写出分量式:0B dB ⊥⊥==⎰r r ;⎰⎰==20sin 4rIdl dB B x x απμ。
统一积分变量:r R =αsin∴⎰⎰==20sin 4rIdl dB B x x απμ⎰=dl r IR304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。
结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。
①当x R >>时,220033224IR I R B xxμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB R Rμμππ==⋅;③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。
Bv⊗RIdlB v第③情况也可以直接用毕—沙定律求出:000220444IIdl IRd B R R Rθμμμθθπππ===⎰⎰。
一、选择题: 1.磁场的高斯定理0SB dS ⋅=⎰⎰vv Ò说明了下面的哪些叙述是正确的?( )(a ) 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; (b ) 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; (c ) 一根磁感应线可以终止在闭合曲面内; (d ) 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
【提示:略】7-2.如图所示,在磁感应强度B 的均匀磁场中作一半经为r 的半球面S ,S 向边线所在平面法线方向单位矢量n v 与B v的夹角为α,则通过半球面S 的磁通量(取凸面向外为正)Φ为: ( ) (A )2r B π;(B )22r B π;(C )2sin r B πα-;(D )2cos r B πα-。
【提示:由通量定义m B d S Φ=⋅⎰vv 知为2cos R B πα-】7--2.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则:( )(A )12d d L L B l B l ⋅=⋅⎰⎰v vv v 蜒,12P P B B =; (B )12d d L L B l B l ⋅≠⋅⎰⎰vvv v 蜒,12P P B B =; (C )12d d L L B l B l ⋅=⋅⎰⎰v vv v 蜒,12P P B B ≠; (D )12d d L L B l B l ⋅≠⋅⎰⎰vvv v 蜒,12P P B B ≠。
【提示:用0i l B d l I μ⋅=∑⎰v v Ñ判断有12L L =⎰⎰蜒;但P 点的磁感应强度应等于空间各电流在P 点产生磁感强度的矢量和】7--1.如图所示,半径为R 的载流圆形线圈与边长为a 的 正方形载流线圈中通有相同的电流I ,若两线圈中心的 磁感应强度大小相等,则半径与边长之比:R a 为:( ) (A )1;(B )2π;(C )2/4π;(D )2/8π。
【载流圆形线圈为:00242O I I B R R μμππ=⋅=;正方形载流线圈为:00432(cos cos )4/244I IB a μππμπ⨯=⋅-=⋅W ,则当O B B =W 时,有:2/4R a π=】nv αSBv Ra7-1.两根长度L 相同的细导线分别密绕在半径为R 和r (2R r =)的两个长直圆筒上形成两个螺线管,两个螺线管长度l 相同,通过的电流I 相同,则在两个螺线管中心的磁感应强度的大小之比:R r B B 为: ( ) (A )4; (B )2; (C )1; (D )12。
【提示:用0B nI μ=判断。
考虑到2R L n R π=,2r L n rπ=】 6.如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当球面S 向长直导线靠近时,穿过球面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化?( ) (A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变;(D )Φ不变,B 增大。
【提示:由磁场的高斯定理0S B dS ⋅=⎰⎰v v Ò知Φ不变,但无限长载流直导线附近磁场分布为:02I B rμπ=】 7.两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为多少? ( )(A )0;(B )R I 2/0μ;(C )R I 2/20μ;(D )R I /0μ。
【提示:载流圆线圈在圆心处为00242I IB R Rμμππ=⋅=,水平线圈磁场方向向上,竖直线圈磁场方向向里,∴合成后磁场大小为B =7-11.如图所示,无限长直导线在P 处弯成半径为R则在圆心O 点的磁感强度大小等于:()(A) 02I R μπ;(B) 04I R μ ;(C) 01(1)2I R μπ- ;(D) 01(1)4I R μπ+ 。
【提示:载流圆线圈在圆心处为00242I I B R R μμππ=⋅=,无限长直导线磁场大小为02IB Rμπ=,方向相反,合成】 9.如图所示,有一无限大通有电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片左边缘为b 处的P 点的磁感强度的大小为:( ) (A )02()Ia b μπ+; (B )0ln 2I a b b aμπ+; (C ) 0ln 2I a ba bμπ+; (D ) 02[(/2)]I a b μπ+。
【提示:无限长直导线磁场大小为02I B r μπ=。
若以铜片左边缘为原点,水平向右为x 轴,有:02()P Id x a d B b x μπ=-,积分有:000ln 22P a I d x I b B a b x a b a μμππ-==-+⎰。
注意:ln ln b b ab a b+=-+】 P10.一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( )(A ) (B ) (C ) (D )【提示:由安培环路定理0i l B d l I μ⋅=∑⎰v v Ñ知r <R 1时, 10B =;R 1< r <R 2时, 022IB r μπ=;r >R 2时, 30B =】11.有一半径R 的单匝圆线圈,通有电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的( ) (A) 4倍和1/8;(B) 4倍和1/2;(C) 2倍和1/4;(D) 2倍和1/2。
【提示:载流圆线圈在圆心磁场为02IB Rμ=,导线长度为2R π,利用22'2R R ππ=⨯,有'/2R R =,∴00'2442'2IIB B R Rμμ=⨯=⨯=;磁矩可利用m N I S =求出,∵2S R π=,2''/4S R S π==,∴'2/4/2m IS m ==】12.洛仑兹力可以( )(A )改变带电粒子的速率; (B )改变带电粒子的动量; (C )对带电粒子作功; (D )增加带电粒子的动能。
【提示:由于洛仑兹力总是与带电粒子的速度方向垂直,所以只改变粒子的运动方向而不改变粒子的速率】13.一张气泡室照片表明,质子的运动轨迹是一半径为0.10m 的圆弧,运动轨迹平面与磁感强度大小为0.3Wb /m 2的磁场垂直,该质子动能的数量级为:( ) (A )0.01MeV ; (B )1MeV ; (C )0.1MeV ; (D )10Mev【提示:由2/ev B mv R =知221()2eBR mv m =,有19224271.6100.30.110()1.6710K E e eV --⨯⋅⋅=⨯:】 7--3.一个半导体薄片置于如图所示的磁场中,薄片通有方向 向右的电流I ,则此半导体两侧的霍尔电势差:( ) (A )电子导电,a b V V <;(B )电子导电,a b V V >; (C )空穴导电,a b V V >;(D )空穴导电,a b V V =。
【提示:如果主要是电子导电,据左手定则,知b 板集聚负电荷,有a b V V >;如果主要是空穴导电,据左手定则,知b 板集聚正电荷,有a b V V <】15.一个通有电流I 的导体,厚度为d ,横截面积为S ,放在磁感强度为B 的匀强磁场中,磁场方向如图所示,现测得导体上下两面电势差为U H ,则此导体的霍尔系数为:( )12R 112R 12R(A )H H U d R I B =;(B )H H I BU R S d =;(C )H H U S R I B d =;(D )H H I U SR B d=。
【提示:霍尔系数为:1H R nq =,而霍尔电压为:H I B U nqd =,∴H H U dR I B=】 16.如图所示,处在某匀强磁场中的载流金属导体块中出现霍耳效应,测得两底面M 、N 的电势差为30.310V M N V V --=⨯,则图中所加匀 强磁场的方向为:( )(A )竖直向上; (B )竖直向下; (C )水平向前; (D )水平向后。
【提示:金属导体主要是电子导电,由题知N 板集聚负电荷,据左手定则,知强磁场方向水平向前】17.有一由N 匝细导线绕成的平面等腰直角三角形线圈,直角边长为a , 通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场方向成60o时,该线圈所受的磁力矩M m 为:( )(A)2Na IB ;(B) 2Na IB ;(C) 2sin 60IB o ;(D) 0 。