第07章 恒定磁场
- 格式:doc
- 大小:470.21 KB
- 文档页数:10
第7章稳恒磁场我们已经知道,在静止电荷的周围存在着电场.当电荷运动时,在其周围不仅有电场,而且还存在磁场.本章将讨论运动电荷(电流)产生磁场的基本规律以及磁场对运动电荷(电流)的作用.§7.1 磁场磁感应强度一、磁场人们对磁现象的认识与研究有着悠久的历史,早在春秋时期(公元前6世纪),我们的祖先就已有“磁石召铁”的记载;宋朝发明了指南针,且将其用于航海.我国古代对磁学的建立和发展作出了很大的贡献.早期对磁现象的认识局限于磁铁磁极之间的相互作用,当时人们认为磁和电是两类截然分开的现象,直到1819—1820年奥斯特(H.C.Oersted,1777—1851)发现电流的磁效应后,人们才认识到磁与电是不可分割地联系在一起的.1820年安培(A.M.Ampere,1775—1836)相继发现了磁体对电流的作用和电流与电流之间的作用,进一步提出了分子电流假设,即:一切磁现象都起源于电流(运动电荷),一切物质的磁性都起源于构成物质的分子中存在的环形电流.这种环形电流称为分子电流.安培的分子电流假设与近代关于原子和分子结构的认识相吻合.关于物质磁性的量子理论表明,核外电子的运动对物质磁性有一定的贡献,但物质磁性的主要来源是电子的自旋磁矩.与电荷之间的相互作用是靠电场来传递的类似,磁相互作用力是通过磁场来进行的.一切运动电荷(电流)都会在周围空间产生磁场,而这磁场又会对处于其中的运动电荷(电流)产生磁力作用,其关系可表示为电流运动电荷⇔⇔磁场运动电荷()(电流)磁场和电场一样,也是客观存在的,它是一种特殊的物质,磁场的物质性表现在:进入磁场中的运动电荷或载流导线受磁场力的作用;载流导线在磁场中运动时,磁场对载流导线要作功,即磁场具有能量.二、磁感应强度1 磁感应强度为了定量的描述磁场的分布状况,引入磁感应强度.它可根据进入磁场中的运动电荷或载流导线受磁场力的作用来定义,下面就从运动电荷在磁场中的受力入手来讨论. 实验发现,磁场对运动电荷的作用有如下规律:(1) 磁场中任一点都有一确定的方向,它与磁场中转动的小磁针静止时N极的指向一致.我们将这一方向规定为磁感应强度的方向.(2) 运动试探电荷在磁场中任一点的受力方向均垂直于该点的磁场与速度方向所确定的平面,如图7.1所示.受力的大小,不仅与试探电荷的电量0q 、经该点时的速率υ以及该点磁场的强弱有关,还与电荷运动的速度相对于磁场的取向有关,当电荷沿磁感应强度的方向运动时,其受力为零;当沿与磁感应强度垂直的方向运动时,其受力最大,用max F 表示.(3) 不管0q 、υ和电荷运动方向与磁场方向的夹角θ如何不同,对于给定的点,比值υq F max 不变,其值仅由磁场的性质决定.我们将这一比值定义为该点的磁感应强度,以B 表示,即 υ=q F B m ax (7.1)在国际单位制中,磁感应强度的单位为特斯拉(T ).有时也采用高斯单位制的单位——高斯(G )1G =1.0×10 -4 T2 磁感应线为了形象的描述磁场中磁感应强度的分布,类比电场中引入电场线的方法引入磁感应线(或叫B 线).磁感应线的画法规定与电场线画法一样.为能用磁感应线描述磁场的强弱分布,规定垂直通过某点附近单位面积的磁感应线数(即磁感应线密度)等于该点B 的大小.实验上可用铁粉来显示磁感应线图形.磁感应线具有如下性质:(1) 磁感应线互不相交,是既无起点又无终点的闭合曲线;(2) 闭合的磁感应线和闭合的电流回路总是互相链环,它们之间的方向关系符合右手螺旋法则.§7.2 毕奥—萨伐尔定律及其应用一、 毕奥—萨伐尔定律在静电学部分,大家已经掌握了求解带电体的电场强度的方法,即把带电体看成是由许多电荷元组成,写出电荷元的场强表达式,然后利用叠加原理求整个带电体的场强.与此类似,载流导线可以看成是由许多电流元组成,如果已知电流元产生的磁感应强度,利用叠加原理便可求出整个电流的磁感应强度.电流元的磁感应强度由毕奥—萨伐尔定律给出,这条定律是拉普拉斯(Laplace)把毕奥(Biot)、萨伐尔(Savart)等人在19世纪20年代的实验资料加以分析和总结后得出的,故称为毕奥—萨伐尔—拉普拉斯定律,简称毕奥—萨伐尔定律,其内容如下:电流元Idl 在真空中某一点P 处产生的磁感应强度dB 的大小与电流元的大小及电流元与它到P 点的位矢 r 之间的夹角θ的正弦乘积成正比,与位矢大小的平方成反比;方向与Id l ×r 的方向相同.(这里用到矢量Id l 与矢量r 的叉乘.叉乘Id l ×r 的大小为Idlr sin θ;其方向满足右手螺旋关系,即伸直的右手,四指从Id l 转向r 的方向,那么拇指所指的方向即为Id l ×r 的方向,如图7.2所示)其数学表达式为2rIdl kdB θ=sin (7.2)式中k 为比例系数,在国际单位制中取为 )(在真空中270104--⋅=πμ=AN k (7.3)0μ为真空的磁导率,其值为270104--⋅⨯π=μAN ,所以毕奥—萨伐尔定律在真空中可表示为204rI d l dB θπμ=sin (7.4)其矢量形式为304rrl Id B d⨯πμ= (7.5) 利用叠加原理,则整个载流导线在P 点产生的磁感应强度B 是(7.5)式沿载流导线的积分,即⎰⎰⨯πμ==LLrr l Id B d B 34(7.6)毕奥—萨伐尔定律和磁场叠加原理,是我们计算任意电流分布磁场的基础,(7.6)式是这二者的具体结合.但该式是一个矢量积分公式,在具体计算时,一般用它的分量式.二、 毕奥—萨伐尔定律应用举例1 直线电流的磁场设在真空中有一长为 L 的载流导线MN ,导线中的电流强度为I ,现计算该直电流附近一点P 处的磁感应强度B .如图7.3 所示,设a 为场点P 到导线的距离,θ为电流元Id l 与其到场点P 的矢径的夹角,θ1、θ2分别为M 、N 处的电流元与M 、N 到场点P 的矢径的夹角.按毕奥—萨伐尔定律,电流元Id l 在场点P 产生的磁感应强度d B 的大小为204rIdl dB θπμ=sind B 的方向垂直纸面向里(即Z 轴负向).导线MN 上的所有电流元在点P 所产生的磁感应强度都具有相同的方向,所以总磁感应强度的大小应为各电流元产生的磁感应强度的代数和,即dl rI dB B LL⎰⎰θπμ==204sin,θ-=β=actg atg l 由图可知,θ=β=θθ=sin /cos /,)/(sin a a r ad dl 2则上积分为 )c o s (c o s s i n 21004421θ-θπμ=θθπμ=⎰θθaI d aI B (7.7)B 的方向垂直于纸面向里.对于无限长载流直导线(π=θ=θ210, ),距离导线为a 处的磁感应强度大小为aI B πμ=20 (7.8)2 圆电流轴线上的磁场在半径为R 的圆形载流线圈中通过的电流为I ,现确定其轴线上任一点P 的磁场.在圆形载流导线上任取一电流元Id l ,点P 相对于电流元Id l 的位置矢量为r ,点P 到圆心O 的距离OP =x ,如图7.4所示.由此可见,对于圆形导线上任一电流元,总有Id l ⊥r ,所以Id l 在点P 产生的磁感应强度的大小为 204rI d l dB πμ=d B 的方向垂直于Id l 和r 所决定的平面.显然圆形载流导线上的各电流元在点P 产生的磁感应强度的方向是不同的,它们分布在以点P 为顶点、以OP 的延长线为轴的圆锥面上.将d B 分解为平行于轴线的分量||dB 和垂直于轴线的分量⊥dB .由轴对称性可知,磁感应强d B 的垂直分量相互抵消.所以磁感应强度B 的大小就等于各电流元在点P 所产生的磁感应强度的轴向分量||dB 的代数和.由图7.4可知 rR rI d l dB dB 204πμ=θ=sin ||所以总磁感应强度的大小为 232220203024/||)(x R IRdl rIR dB B R+μ=πμ==⎰⎰π (7.9)B 的方向沿着轴线,与分量||dB 的方向一致.在圆形电流中心(即x = 0)处,其磁感应强度为 RI B 20μ=(7.10)B 的方向可由右手螺旋定则确定.而且圆形电流的任一电流元在其中心处所产生的磁感应强度的方向都沿轴线且满足右手定则.所以,圆形电流在其中心的磁感应强度是由组成圆形电流的所有电流元在中心产生的磁感应强度的标量和,对圆心角为θ的一段圆弧电流,在其圆心的磁感应强度为 36020θμ=R IB (7.11)可以看出,一个圆形电流产生的磁场的磁感应线是以其轴线为轴对称分布的,这与条形磁铁或磁针的情形颇相似,并且其行为也与条形磁铁或磁针相似.于是我们引入磁矩这一概念来描述圆形电流或载流平面线圈的磁行为,圆电流的磁矩m 定义为nIS m ˆ=(7.12) 式中S 是圆形电流所包围的平面面积,n 是该平面的法向单位矢,其指向与电流的方向满足右手螺旋关系.对于多匝平面线圈,式中的电流 I 应以线圈的总匝数与每匝线圈的电流的乘积代替.利用圆电流在轴线上的磁场公式通过叠加原理可以计算直载流螺线管轴线上的磁感应强度.对于长直密绕载流螺线管,其轴线上的磁感应强度为nI B 0μ=,n 是单位长度的匝数,I 是每匝导线的电流强度.例7.1电流为I 的无限长载流导线 abcde 被弯曲成如图7.5所示的形状.圆弧半径为R ,θ1=450,θ2= 135o .求该电流在O 点处产生的磁感应强度.解:将载流导线分为ab,bc,cd 及de 四段,它们在O 点产生的磁感应强度的矢量和即为整个导线在O 点产生的磁感应强度.由于O 在ab及de 的延长线及反向延长线上,由(7.7)式知 0==de ab B B由图7.5知, bc 弧段对O 的张角为90 o ,由(7.11)式得 RI R I B bc 836090200μ=μ=其方向垂直纸面向里.由(7.7)式得电流cd 段所产生的磁感应强度为)cos (cos 2104θ-θπμ=aI B cdRI R I oo oπμ=-πμ=21354545400)cos (cos sin其方向亦垂直纸面向里.故O 点处的磁感应强度的大小为)(π+μ=4180RI B方向垂直纸面向里. 作业(P172):7.14,7.18§7.3 运动电荷的磁场由于电流是运动电荷形成的,所以可以从电流元的磁场公式导出匀速运动电荷的磁场公式.根据毕奥—萨伐尔定律,电流元Id l 在空间的一点P 产生的磁感应强度为304rr l Id dB π⨯μ=如图7.6所示,设S 是电流元Id l 的横截面的面积,并设在导体单位体积内有n 个载流子,每个载流子带电量为q,以速度υ沿Id l 的方向匀速运动,形成导体中的电流.那么单位时间内通过横截面S 的电量为S qn υ,亦即电流强度为S qn I υ=,则Sdl qn Idl υ=,如果将q 视为代数量,Id l的方向就是υq 的方向,因此可以把d l 中的矢量符号加在速度υ 上,即υ= qnSdl l Id .将Id l这一表达式代入毕奥——萨伐尔定律中就可得dN rr q r r qnSdl B d 303044⨯υπμ=π⨯υμ= 其中dN = nSdl 代表此电流元内的总载流子个数,即这磁感应强度是由dN = nSdl 个载流子产生的,那么每一个电量为q ,以速度为υ运动的点电荷所产生的磁感应强度B 为304rrq B ⨯υπμ= (7.13) B 的方向垂直于υ和r 所组成的平面,其指向亦符合右手螺旋法则.值得注意,对于高速运动电荷,上结果不再适用.需要考虑相对论效应,其结果见§14.5节.§7.4 磁场的高斯定理和安培环路定理稳恒磁场与库仑电场有着不同的基本性质,库仑电场的基本性质可以通过库仑场的高斯定理和环路定理来描述;稳恒磁场的基本性质也可以用关于磁场的这两个定理来描述.本节就来介绍稳恒磁场的高斯定理和安培环路定理. 一、磁场的高斯定理1 磁通量在说明磁场的规律时,类比电通量,也可引入磁通量的概念.通过某一面积S 的磁通量的定义是 ⎰⎰⋅=ΦSe Sd B (7.14)即等于通过该面积的磁感应线的总条数.在国际单位制中,磁通量的单位为韦伯(Wb).1Wb=1T ·m 2 .据此,磁感应强度的单位T 也常写作Wb/m 2 .2 磁场的高斯定理对于闭合曲面,若规定曲面各处的外法向为该处面元矢量的正方向,则对闭面上一面元的磁通量为正就表示磁感应线穿出闭面,磁通量为负表示磁感应线穿入闭面.对任一闭合曲面S,由于磁感应线是无头无尾的闭合曲线,不难想象,凡是从S 某处穿入的磁感应线,必定从S 的另一处穿出,即穿入和穿出闭合曲面S 的净条数必定等于零.所以通过任意闭合曲面S 的磁通量为零,即0=⋅⎰⎰SS d B(7.15)这是恒定磁场的一个普遍性质,称为磁场的高斯定理.二、安培环路定理由毕奥——萨伐尔定律表示的电流和它的磁场的关系,可以导出稳恒磁场的一条基本规律——安培环路定理.其内容为:在稳恒电流的磁场中,磁感应强度B 沿任何闭合路径 L 的线积分(即B 对闭合路径 L 的环量)等于路径L 所包围的电流强度的代数和的0μ倍,它的数学表达式为I I l d B L00μ=μ=⋅∑⎰i n t(7.16)下面以长直稳恒电流的磁场为例简单说明安培环路定理.根据(7.8)式知,距电流强度为I 的无限长电流的距离为r 处的磁感应强度为 rI B πμ=20B 线为在垂直于直导线的平面内围绕该导线的同心圆,其绕向与电流方向成右手螺旋关系.1)在上述平面内围绕导线作一任意形状的闭合路径L(如图7.7所示),沿L 计算B 的环量.在路径L 上任一点P 处,d l 与B 的夹角为θ,它对电流通过点所张之角为αd .由于B 垂直于矢径r ,因而dl cos θ就是d l 在垂直于r 方向上的投影,它就等于αd 所对的以 r 为半径的圆弧长,由于此弧长等于r αd ,所以I rd r IBrd l d B Brd l d B LLLL 002μ=απμ=α=⋅−−−→−α=⋅⎰⎰⎰ 上的环量(7.17)此式说明,当闭合路径L 包围电流I 时,这个电流对该环路上B 的环路积分为I 0μ.2)如果电流的方向相反,仍按图7.7所示的路径L 的方向进行积分时,由于B 的方向与图示方向相反,所以应该得I l d B L0μ-=⋅⎰可见积分的结果与电流的方向有关.如果对电流的正负作如下规定,即电流的方向与L 的绕行方向符合右手螺旋关系时,此电流为正,否则为负,则B 的环路积分的值可以统一用式(7.17)表示.3)如果闭合路径不包围电流,如图7.8所示,L 为在垂直于载流导线平面内的任一不围绕电流的闭合路径.过电流通过点作L 的两条切线,将L 分为21L L 和两部分,沿图示方向计算B 的环量为⎰⎰⎰⋅+⋅=⋅21L L Ll d B l d B l d B)(⎰⎰α+απμ=2120L L d d I020=α-+απμ=)]([I可见,闭合路径L 不包围电流时,该电流对沿这一闭合路径的B 的环路积分无贡献.上面的讨论只涉及在垂直于长直电流的平面内的闭合路径.易证在长直电流的情况下,对非平面闭合路径,上述讨论也适用.还可进一步证明,对于任意的闭合稳恒电流,上述B 的环路积分和电流的关系仍然成立.这样,再根据磁场的叠加原理可得到,当有若干个闭合稳恒电流存在时,沿任一闭合路径L,合磁场的环路积分为∑⎰μ=⋅int I l d B L式中∑int I 是环路L 所包围的电流的代数和.上式就是我们要证明的安培环路定理式.值得指出,闭合路径L 包围的电流的含义是指与L 所链环的电流,对闭合稳恒电流的一部分(即一段稳恒电流)安培环路定理不成立;另外,在安培环路定理表达式中的电流∑int I 是闭合路径L 所包围的电流的代数和,但定理式左边的磁感应强度B ,却代表空间所有电流产生的磁感应强度的矢量和.三、安培环路定理的应用1 载流长直螺线管内的磁场设有一长直螺线管,长为L ,共有N 匝线圈,通有电流I ,由于螺线管很长,则管内中央部分的磁场是均匀的,并可证明,方向与螺线管的轴线平行.管的外侧,磁场很弱,可以忽略不计.为了计算螺线管中央部分某点P 的磁感应强度.可通过P 点作一矩形闭合线 abcda 如图7.9所示.在如图的绕行方向下,B 矢量的线积分为⎰⎰⎰⎰⎰⋅+⋅+⋅+⋅=⋅add ccbbaLl d B l d B l d B l d B l d B由于磁场方向与螺线管的轴线平行,故bc ,da 段上B 与d l 处处垂直,所以=⋅=⋅⎰⎰adcb l d B l d B ,又 cd 在螺线管外侧附近,其上磁感应强度为零,所以ab B l d B l d B badc=⋅=⋅⎰⎰而0,于是有nI B I ab n ab B ab B l d B L00μ=→μ=−−−→−=⋅⎰环路定理 (7.18)由于P 点是长直螺线管内的中央部分任一点,所以上式就是螺线管中央部分的磁场分布,它是一匀强磁场.2 环形螺线管内的磁场如图7.10是环形空心螺线管的示意图.设线圈匝数为N ,电流为I ,方向如图所示.如果导线绕的很密,则全部磁场都集中在管内,磁感应线是一系列圆环,圆心都在螺线管的对称轴上.由对称性可知,在同一磁感应线上的各点,磁感应强度B 的大小相等,B 的方向为沿磁感应线的切线方向,为计算管内某一点P 的磁感应强度B ,选通过该点的一条磁感应线为闭合路径(如图是半径为 r 的圆周),应用安培环路定理得r NI B NI r B l d B Lπμ=→μ=π=⋅⎰2200 (7.19a) 可见,环形螺线管内的磁感应强度B 的大小与r 成正比.若环形螺线管的内外半径之差比r 小得多,则可认为环内各点的B 值近似相等,其大小为 nI RNI B 002μ=πμ=(7.19b)其中,R 是环形螺线管的平均半径, n=N/2πR 为平均周长上单位长度的匝数.作业(P173):7.20,7.22§7.5 磁场对载流导线的作用一、安培定律磁场的基本属性就是对处于其中的运动电荷有力的作用,前面我们根据这一属性定义了磁感应强度.而大量电荷作定向运动形成电流.载流导线处于磁场中,由于作定向运动的自由电子所受的磁力,传递给金属晶格,宏观上就表现为磁场对载流导线的作用.关于磁场对载流导线的作用力,安培从许多实验结果的分析中总结出关于载流导线上一段电流元受力的基本定律,即安培定律,其内容如下:磁场对电流元Id l 的作用力d F 与电流元的大小Idl 、电流元所在处的磁感应强度B 的大小,以及B 与Id l 之间的夹角θ的正弦成正比,其方向垂直于Id l 和B 决定的平面,指向遵守右手螺旋法则,即Id l ×B 的方向(如图7.11所示).其数学表达式为B l Id F d⨯=(7.20)任何形状的载流导线在外磁场中所受的磁场力(即安培力),应该等于各段电流元所受磁力的矢量和,即⎰⨯=LB l Id F(7.21)这是一个矢量积分,一般情况下应化为分量式求解.但若各电流元的受力都沿同一方向,矢量积分就自然化为标量积分.例题7.2半径为R,电流为I 的半圆形载流导线置于磁感应强度为B 的均匀磁场中,B 和I 的方向如图7.12所示.求半圆形载流导线受到的安培力.解:建立如图7.12所示的直角坐标系XOY .在半圆环上任取一电流元Id l ,它受到的安培力的大小为B I d l B I d l dF =π=2/sin方向沿电流元的位矢方向.由图可知,dF 沿X 轴的投影α=α=co s c o s B I d l dF dF x 在Y 轴上的投影α=α=si n s i n B I d l dF dF y dl = - Rd α,故000=αα-=α==⎰⎰⎰πd B I R B I d l dF F l x x cos cosBRId BIR BIdldFF lyy 20=αα-=α==⎰⎰⎰πsin sin即半圆形载流导线受到的安培力为F=2BIR ,方向沿Y 轴正向.二、两平行长直电流之间的相互作用电流能够产生磁场,磁场又会对处于其中的电流施加作用力.因此,一电流与另一电流的作用就是一电流的磁场对另一电流的作用,这作用力可利用毕奥—萨伐尔定律和安培定律通过矢量积分获得,在一般情况下计算比较困难.下面讨论一种简单情形,即两平行长直电流之间的相互作用.如图7.13所示,两条相互平行的长直载流导线,相距为 a ,分别载有同向电流21I I ,. 1I 在导线2中各点所产生的磁感应强度的大小为 aI B πμ=21012方向如图,它对导线2中的任一电流元22l d I的作用力可由安培定律得122212B l d I F d⨯=其方向如图在两平行导线所在平面内,垂直指向导线1.其大小为 adl I I B dl I dF πμ==22210122212那么载流导线2中每单位长度所受载流导线1的作用力大小为aI I dl F f πμ==221021212 (7.22)用同样的方法可以求得导线1中单位长度所受载流导线2的作用力大小为 aI I f πμ=221021 (7.23)21f 与12f 大小相等、方向相反,体现为引力;若两平行导线中的电流方向相反,则彼此间的相互作用为斥力.在国际单位制中,电流强度被作为基本物理量,它的单位安培(A)作为基本单位.这一基本单位就是利用两条相互平行的长直载流导线间的相互作用力来定义的:真空中两条载有等量电流,且相距为1米的长直导线,当每米长度上的相互作用力为2×10-7N 时,导线中的电流大小定义为1安培. 据此定义及式(7.22)可得2AN m1A A mN---⋅⨯π=μ→⋅πμ=⨯70071041121102可见真空的磁导率0μ是一个具有单位的导出量.三、磁场对载流线圈的作用利用安培定律可以分析匀强磁场对载流线圈的作用.图7.14表示了一个矩形平面线圈ABCD ,其中边长21l DA BC l CD AB ====,,线圈内通有电流I ,我们规定线圈平面法线n 的正方向与线圈中的电流方向满足右手螺旋关系.将这个线圈放在磁感应强度为B 的匀强磁场中,并设线圈的法线方向与磁场方向成α角.根据安培定律,AD 边和BC 边所受磁场力始终处于线圈平面内,并且大小相等,方向相反,作用在同一条直线上,因而相互抵消.而AB 边和CD 边,由于电流的方向始终与磁场垂直,它们所受磁力CD AB f f 和的大小相等为 1B I l f f CD AB ==它们的方向相反,但不在同一直线上,因而构成力偶,为线圈提供了力矩,如图7.14(b)所示.此力矩的大小为α=α=α+α=sin sin sin sin mB BIS l f l f M CDAB222121(7.24)nIS m ˆ=磁矩 B m M⨯=矢量式(7.26)可见,当2/π=α (即线圈平面与磁场方向平行)时,线圈所受力矩最大.在此力矩作用下,线圈将绕其中心并平行于AB 边的轴转动.随着线圈的转动,α角逐渐减小,当α= 0 (即线圈平面与磁场方向垂直)时,力矩等于零,线圈达到稳定平衡状态.当α=π时,力矩也等于零,也是线圈的平衡位置,但这个位置不是线圈的稳定平衡位置,稍受扰动就会立即转到α= 0的位置上去.以上结论是通过对均匀磁场中的矩形载流线圈的讨论得到的,但可证明对均匀磁场中的任意形状的载流平面线圈,上结果均适用.可见,对均匀磁场中的任意平面刚性线圈,线圈所受磁力为零而不发生平动,但在不为零的磁力矩作用下将发生转动.如果线圈处于非均匀磁场中,线圈除受力矩的作用外,还要受合力的作用,这样线圈除转动外,还要发生平动.例题7.3如图7.15所示,在通有电流1I 的长直导线旁有一平面圆形线圈,线圈半径为R ,线圈中心到导线的距离为l ,线圈通有电流2I ,线圈与直导线电流在同一平面内,求线圈所受到的磁场力.解:如图7.15所示,由式(7.9)可得1I 在线圈上任一电流元处的磁感应强度大小为)cos (θ+πμ=R l I B 12方向垂直于纸面向内.据安培定律,电流元l d I2受到的磁场力大小为 θ==Rd BI dl BI df 22 方向沿半径向外,垂直于l d I2.由对称性可知上半球所受的力与下半球所受的力在竖直方向上的分量互相抵消,即 020==⎰πy y df f所以整个线圈所受的力为⎰⎰⎰πππθθ+θπμ=θ===0210020222d R l R I I df df f f x x cos cos cos)(222101Rl l I I --μ=方向沿X 轴正向. 作业(P174):7.24§6.6 洛仑兹力一、洛仑兹力实验表明,运动电荷在磁场中会受磁力作用,这种力称为洛仑兹力.本章第一节正是用这一力定义了磁感应强度.前已述及,磁场对电流元的作用是磁场对运动电荷作用的整体体现 ,即安培力起源于洛仑兹力.下面利用安培定律推出洛仑兹力公式.设电流元Id l 的横截面积为S ,如果载流子的电量为q,都以速度υ作定向运动而提供电流I .设导体单位体积内的载流子数为 n ,则 υ=q n S I电流元Id l 的方向就是正载流子作定向运动的方向,即υq 的方向,于是安培定律可化为 B Nq B nqSdl B l Id F d⨯υ=⨯υ=⨯=式中N 是电流元所包含的载流子总数.则单个载流子所受的力为B q dNF d f⨯υ== (7.27)这就是电量为q ,以速度为υ运动的带电粒子在磁感应强度为B 的磁场中运动时所受的洛仑兹力.电量q 是代数量,当 q >0 时,f的方向与B⨯υ的方向相同;当 q< 0 时, f的方向与B⨯υ的方向相反.由于洛仑兹力的方向垂直于粒子运动的方向,所以洛仑兹力不做功.例题7.4如图7.16是速度选择器的原理图.它是由均匀磁场(方向垂直纸面向外,设B=1.0×10-3T)中两块金属板21P P 、构成.其中1P 板带正电, 2P 板带负电,于是两板间产生一匀强电场(设E=300V ·m -1 ),电场的方向垂直于磁场.试求当速度υ不同的正离子沿图示方向进入速度选择器时,离子受到的电场力e f 的方向和洛仑兹力mf 的方向.速度为多大的正离子才能沿原来的方向直线前进,并穿过速度选择器?解:对于正离子q > 0 ,则离子受的电场力 ,E q f e=其方向与板面垂直向右.设离子运动的速度为υ,则离子所受的磁场力。
恒定磁场一、基本要求1、了解电流密度的概念。
2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。
3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。
掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。
4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。
掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。
二、主要内容 1、稳恒电流电流:电荷的定向运动。
电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。
电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。
电流密度是描述电流分布细节的物理量,单位是2/m A 。
电流强度⎰⋅=SS d Iδ。
2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。
磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。
和电场一样,磁场也是一种物质。
3、磁感应强度磁感应强度B是描述磁场性质的物理量。
当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。
B 的大小定义为qvF B max=。
如右图所示。
B 的单位为T (特斯拉)。
4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。
毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。
运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。
几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。
1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。
即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。
磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。
实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。
第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
一、概念选择题:1.下列哪位科学家首先发现了电流对小磁针有力的作用:( D )(A)麦克斯韦(B)牛顿(C)库仑(D)奥斯特2.磁场对运动电荷或载流导线有力的作用,下列说法中不正确的是:( B )(A)磁场对运动粒子的作用不能增大粒子的动能(B)在磁场方向和电流方向一定的情况下,导体所受安培力的方向与载流子种类有关(C)在磁场方向和电流方向一定的情况下,霍尔电压的正负与载流子的种类有关(D)磁场对运动电荷的作用力称做洛仑兹力,它与运动电荷的正负、速率以及速度与磁场的方向有关。
3.运动电荷之间的相互作用是通过什么来实现的:( B )(A)静电场(B)磁场(C)引力场(D)库仑力4.在均匀磁场中,放置一个正方形的载流线圈,使其每边受到的磁力的大小都相同的方法有:( B )(A)无论怎么放都可以(B)使线圈的法线与磁场平行(C)使线圈的法线与磁场垂直(D)(B)和(C)两种方法都可以5.电流之间的相互作用是通过什么来实现的:(B )(A)静电场(B)磁场(C)引力场(D)库仑力6.一平面载流线圈置于均匀磁场中,下列说法正确的是:(D )(A)只有正方形的平面载流线圈,外磁场的合力才为零(B)只有圆形的平面载流线圈,外磁场的合力才为零(C)任意形状的平面载流线圈,外磁场的合力和力矩一定为零(D)任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定零7.下列说法不正确的是:(A )(A)静止电荷在磁场中受到力的作用(B)静止电荷在电场中受到力的作用(C)电流在磁场中受到力的作用(D )运动电荷在磁场中受到力的作用8.一根长为L ,载流I 的直导线置于均匀磁场B 中,计算安培力大小的公式是sin F IBL θ=,这个公式中的θ代表:( B ) (A )直导线L 和磁场B 的夹角 (B )直导线中电流方向和磁场B 的夹角 (C )直导线L 的法线和磁场B 的夹角(D )因为是直导线和均匀磁场,则可令090θ=9.磁感强度的单位是:( D )(A )韦伯 (B )亨利 (C )牛顿/库伦 (D )特斯拉10.在静止电子附近放置一条载流直导线,则电子在直导线产生的磁场中的运动状态是( D )(A )向靠近导线方向运动 (B )向远离导线方向运动 (C )沿导线方向运动 (D )静止11.下列说法正确的是:( B )(A )磁场中各点的磁感强度不随时间变化,称为均匀磁场 (B )磁场中各点的磁感强度大小和方向都相同,称为均匀磁场 (C )磁场中各点的磁感强度大小和方向都相同,称为稳恒磁场 (D )稳恒磁场中,各点的磁感强度大小一定都相同12.洛仑兹力可以:( B )(A )改变运动带电粒子的速率 (B )改变带电运动粒子的动量 (C )对带电运动粒子作功 (D )增加带电运动粒子的动能13.下列公式不正确的是:( D ) (A )03d 4πI l rdB rμ⨯= (B )02d 4πrI l e dB rμ⨯= (C )02d sin 4πI l dB r μθ=(D )02d sin 4πI l dB r μθ=14.关于带电粒子在磁场中的运动,说法正确的是:( C )(A )带电粒子在磁场中运动的回旋半径与粒子速度无关(B )带电粒子在磁场中运动的回旋周期与粒子速度有关(C )带电粒子在磁场中的运动有广泛的应用,例如:磁聚焦、磁瓶、磁镜等等(D )带电粒子在磁场中运动时,受到的力为安培力15.在非均匀磁场B 中,有一电荷为q (0q <)的运动电荷。
当电荷运动至某点时,其速度为v ,它所受的磁力为f ,磁力f 沿什么方向:( D ) (A )υ (B )B (C )B υ⨯ (D )B υ-⨯16.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( C )(A ) 0=⋅⎰Ll d B,且环路上任意一点B=0(B ) 0≠⋅⎰Ll d B,且环路上任意一点B≠0(C ) 0=⋅⎰Ll d B,且环路上任意一点B≠0(D ) 0≠⋅⎰Ll d B,且环路上任意一点B=017.描述电流元与它所激发的磁感强度之间关系的是:( B )(A )安培环路定理 (B )毕奥-萨伐尔定律 (C )高斯定理 (D )库仑定律18.若空间存在两根无限长载流直导线,空间的磁场分布就不具有简单的对称性,则该磁场分布:( D )(A )不能用安培环路定理来计算 (B )可以直接用安培环路定理求出 (C )只能用毕奥-萨伐尔定律求出(D )可以用安培环路定理和磁感强度的叠加原理求出19.一载流圆线圈面积为S ,通入电流为I ,则n m ISe =中m 表示:( C ) (A )力矩 (B )电偶极矩 (C )磁矩 (D )磁力矩20.下列可用安培环路定理求磁感强度的是:( D ) (A )有限长载流直导体 (B (C )有限长载流螺线管 (D )无限长螺线管21.下列关于磁感线的说法中错误的是:( D )(A) 曲线上任意一点的切线方向就是该点磁感强度的方向 (B) 磁感线密的地方磁场就强(C) 载流导线周围的磁感线都是围绕电流的闭合曲线(D) 磁场中某点处单位面积上通过的磁感线数目就等于该点磁感强度的大小22.取一闭合积分回路L ,使三根载流导线穿过它所围成的面。
现改变三根导线之间的相互间隔,但不越出积分回路,则:( B )(A) 回路L 内的I ∑不变,L 上各点的B不变(B) 回路L 内的I ∑不变,L 上各点的B改变 (C) 回路L 内的I ∑改变,L 上各点的B不变 (D) 回路L 内的I ∑改变,L 上各点的B改变23.磁场中的高斯定理为⎰=⋅Ss d B 0,以下说法正确的是:( D )(A) 高斯定理只适用于封闭曲面中没有永磁体和电流的情况 (B) 高斯定理只适用于封闭曲面中没有电流的情况 (C) 高斯定理说明磁场是有源场 (D) 高斯定理说明磁场是无源场24.下列结论中你认为正确的是:( C )(A) 一根给定磁感应线上各点的磁感强度B的量值相同 (B) 用安培环路定理可以求出有限长一段直线电流周围的磁场(C) 运动电荷所受磁力最小时,电荷的运动方向和B 的方向平行; (D) 一个不为零的电流元在它的周围空间中任一点产生的磁感强度均不为零二、判断题:1.单位正电荷绕闭合回路一周,非静电力所作的功为电源的电动势。
( √ ) 2.一条载流长直导线,在导线上的任何一点,由导线上的电流所产生的磁场强度为零。
( √ )3.一段电流元Idl 所产生的磁场的方向并不总是与Idl 垂直。
( × )4.电源电动势是将负电荷从电源负极通过电源内部移到电源正极时,非静电力作的功。
( × )5.载流导线所产生的磁场与地球磁场之间,由于性质不同,不可以进行磁场的叠加。
( × )6. 当需要对一个在地球上、暴露在空气中的点的磁场进行精确测量时,如果磁场比较弱,需要考虑地球磁场的影响。
( × )7. 电荷运动方向与磁场方向一致时,电荷所受的磁场作用力为零。
( √ ) 8.通过磁场的高斯定理可以说明,磁感应线是无头无尾,恒是闭合的。
( √ ) 9.可用安培环路定律推导出毕奥-萨伐尔定律。
( × )10. 在一均匀磁场中,若带电粒子的速度v 与磁感应强度B 斜交成θ角,2πθ≠,则带电粒子的运动轨道是一螺旋线。
( √ ) 11. 电动势用正、负来表示方向,它是矢量。
( × )12. 如果一个电子在通过空间某一区域时不偏转,则这个区域一定没有磁场。
( × )13. 两个平行放置的同轴圆环形导体,若通以电流后,它们彼此排斥,则两环中电流流动的方向相同。
( × )三、计算选择题:1.123,,I I I 分别表示垂直纸面向外的电流,12,L L 是两个闭合回路,以321B B B、、分别表示三个电流激发的磁场,如图所示,则下列各式错误的是:( B )(A )⎰=⋅1101L I μl d B (B )⎰+=⋅1)(2101L I I μl d B(C )⎰+=⋅+1)()(21021L I I μl d B B (D )⎰+=⋅++1)()(210321L I I μl d B B B2.如图所示,在磁感强度为B 的匀强磁场中,有一半径为R 的半球面,B 与半球面的轴线夹角为α,则通过半球面的磁通量为多少:( A )(A )2cos R B πα (B )2/cos R B πα (C )24R B π (D )2R B π3.长直导线通以电流I 弯成如图形状,则圆心O 点的磁感强度大小为 :( B ) (A )0024I I R R μμπ+(B )0048I IR R μμπ+ (C )0028I I R R μμπ+ (D )0044I IR Rμμπ+4.如图所示的正方形线圈ABCD ,每边长为a ,通有电流I ,则正方形中心O 处的磁感强度的大小是:( C ) (A)0I a π (B)02I a π (C)0I a π (D )02Iaμπ5.通有电流I 的正方形线圈,边长为a ,如图放置在均匀磁场中,已知磁感强度B 沿Z 轴方向,则线圈所受的磁力矩M 为:( D ) (A ) 2Ia B , 沿z 方向(B ) 212Ia B , 沿z 方向(C ) 2Ia B , 沿y 方向(D ) 212Ia B , 沿y 方向6.一电子以速度υ垂直进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围面积内的磁通量将:( B )(A )正比于B ,反比于2υ (B )反比于B ,正比于2υ (C )正比于B ,反比于υ (D )反比于B ,反比于υ7.一边长为2l m =的立方体,它的三条边分别沿直角坐标x 、y 、z 三个坐标轴正方向放置,立方体的一个顶点与坐标系的原点重合。
有一均匀磁场(1063)B i j k =++特斯拉,通过立方体所在区域,则通过立方体的总磁通量为:( A )(A )0 (B )40 Wb (C )24 Wb (D )12 Wb8.如图所示,流出纸面的电流为2I ,流进纸面的电流为I ,则下述式中哪一个是正确的( D )(A ) ⎰=⋅102L I μl d B(B ) ⎰=⋅20L I μl d B(C ) ⎰-=⋅30L I μl d B(D )⎰-=⋅40L I μl d B9.载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R =2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感强度大小B R 和B r 应满足:( B )(A )B R =2B r (B )B R =B r (C )2B R =B r (D )B R =4B r10.无限长直圆柱体,半径为R ,沿轴向均匀流有电流。