一元二次方程--湘教版
- 格式:pdf
- 大小:1.77 MB
- 文档页数:10
湘教版数学九年级上册2.1《一元二次方程》教学设计一. 教材分析湘教版数学九年级上册2.1《一元二次方程》是整个初中数学的重要内容,它不仅是一元二次方程知识体系的延续和拓展,也是对之前所学知识的综合运用。
本节课的内容主要包括一元二次方程的定义、解法、应用等方面。
通过本节课的学习,让学生掌握一元二次方程的基本知识,能够解决实际问题,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的运算、方程的知识,对解方程有一定的了解。
但一元二次方程相对复杂,需要学生在已有的知识体系上进行进一步的推理和理解。
同时,学生需要掌握一元二次方程的解法,以及如何将实际问题转化为数学问题,这都需要学生在学习过程中进行深入的思考和实践。
三. 教学目标1.理解一元二次方程的定义,掌握一元二次方程的解法。
2.能够将实际问题转化为数学问题,并运用一元二次方程进行解决。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.一元二次方程的定义,以及一元二次方程的解法。
2.如何将实际问题转化为数学问题,并运用一元二次方程进行解决。
五. 教学方法1.采用问题驱动法,引导学生主动探究一元二次方程的定义和解法。
2.采用案例分析法,让学生通过实际问题,理解一元二次方程的应用。
3.采用小组合作法,让学生在小组内进行讨论和交流,共同解决问题。
六. 教学准备1.准备相关的教学案例,用于引导学生将实际问题转化为数学问题。
2.准备一元二次方程的解法教程,用于让学生掌握一元二次方程的解法。
3.准备教学PPT,用于展示一元二次方程的定义和解法。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已知的方程知识,为新知识的学习做好铺垫。
然后,教师给出一个实际问题,让学生尝试解决,从而引出一元二次方程的概念。
2.呈现(15分钟)教师通过PPT展示一元二次方程的定义,让学生了解一元二次方程的基本形式。
接着,教师讲解一元二次方程的解法,包括因式分解法、公式法等,让学生掌握解一元二次方程的方法。
湘教版数学九年级上册2.2《一元二次方程的解法》教学设计1一. 教材分析《一元二次方程的解法》是湘教版数学九年级上册第二章第二节的内容。
本节主要让学生掌握一元二次方程的解法,包括公式法、因式分解法等。
通过本节的学习,学生能够熟练运用各种方法解一元二次方程,并为后续学习其他数学知识打下基础。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。
但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解和掌握。
在学习过程中,学生可能会对公式法和解根公式的推导过程感到困惑,需要教师进行耐心讲解和引导。
三. 教学目标1.知识与技能:让学生掌握一元二次方程的解法,包括公式法、因式分解法等。
2.过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一元二次方程的解法。
2.难点:公式法和解根公式的推导过程。
五. 教学方法1.讲授法:教师讲解一元二次方程的解法,引导学生理解和解根公式的推导过程。
2.案例分析法:通过典型例题,让学生掌握一元二次方程的解法。
3.小组讨论法:学生分组讨论,共同解决问题,培养学生的团队合作精神。
4.实践操作法:让学生动手解一元二次方程,提高学生的实际操作能力。
六. 教学准备1.教师准备:备好相关教学内容,准备典型例题和练习题。
2.学生准备:预习一元二次方程的解法,了解一元二次方程的基本概念。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师讲解一元二次方程的解法,包括公式法、因式分解法等。
重点讲解公式法和解根公式的推导过程。
3.操练(10分钟)学生分组讨论,共同解决典型例题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和分析。
湘教版数学九年级上册第二章《一元二次方程》复习教学设计一. 教材分析湘教版数学九年级上册第二章《一元二次方程》是整个初中数学的重要内容,也是初高中数学衔接的关键。
本章主要引导学生掌握一元二次方程的解法、应用以及方程的性质。
通过本章的学习,学生能理解和掌握一元二次方程的基本概念,熟练运用各种方法解一元二次方程,并能够解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。
但是,对于一元二次方程的理解和应用还存在困难,尤其是在解方程的技巧和转化能力上。
因此,在复习教学中,需要针对学生的实际情况,引导学生梳理知识,提高解题能力。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的基本概念,能够熟练运用各种方法解一元二次方程,并能够解决实际问题。
2.过程与方法:通过复习教学,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用价值。
四. 教学重难点1.重点:一元二次方程的基本概念,解一元二次方程的各种方法。
2.难点:一元二次方程的解法在实际问题中的应用,解题思路的转化。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解一元二次方程的实际意义,提高学生的学习兴趣。
2.案例教学法:分析典型题目,引导学生掌握解题方法,培养学生的解题能力。
3.小组合作学习:鼓励学生相互讨论、交流,提高学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,巩固所学知识,提高学生的解题能力。
3.教学视频:准备一些教学视频,让学生更直观地理解一元二次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾一元二次方程的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)利用课件,展示一元二次方程的解法,引导学生复习各种解法,如因式分解法、公式法、配方法等。
湘教版数学九年级上册2.1《一元二次方程》教学设计1一. 教材分析《一元二次方程》是湘教版数学九年级上册第2.1节的内容,本节内容主要让学生掌握一元二次方程的定义、解法以及应用。
一元二次方程是初中数学的重要内容,也是进一步学习高中数学的基础。
通过本节内容的学习,让学生能够解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对公式、定理有一定的理解能力。
但一元二次方程相对复杂,需要学生有一定的逻辑思维能力和抽象思维能力。
在教学过程中,要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.让学生理解一元二次方程的定义,掌握一元二次方程的解法。
2.培养学生运用一元二次方程解决实际问题的能力。
3.提高学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.一元二次方程的定义。
2.一元二次方程的解法。
3.一元二次方程在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例。
3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
通过问题驱动,激发学生的学习兴趣。
2.呈现(15分钟)介绍一元二次方程的定义,通过PPT展示一元二次方程的一般形式,让学生理解一元二次方程的概念。
3.操练(20分钟)让学生通过小组合作学习,探究一元二次方程的解法。
可以采用案例教学法,给出一些具体的一元二次方程,让学生动手操作,找出解题规律。
4.巩固(10分钟)针对学生掌握的情况,设计一些练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)引导学生思考一元二次方程在实际问题中的应用,让学生尝试解决一些实际问题,提高学生的数学应用能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确一元二次方程的定义、解法以及应用。
湘教版数学九年级上册2.2《一元二次方程的解法》教学设计2一. 教材分析《一元二次方程的解法》是湘教版数学九年级上册第二章第二节的内容。
本节内容是在学生已经掌握了方程的解法的基础上,进一步学习一元二次方程的解法。
一元二次方程是初中数学中的重要内容,它在实际生活和工作中有着广泛的应用。
本节内容的学习,不仅能够巩固学生对一元二次方程的理解,还能够提高学生的解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对方程的概念和解法有一定的了解。
但是,对于一元二次方程的解法,部分学生可能还存在着理解上的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的困难进行有针对性的讲解和辅导。
三. 教学目标1.知识与技能目标:使学生掌握一元二次方程的解法,能够熟练运用解法解一元二次方程。
2.过程与方法目标:通过学生的自主学习、合作交流,培养学生的解决问题能力和团队合作精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和坚持不懈的精神。
四. 教学重难点1.重点:一元二次方程的解法。
2.难点:理解一元二次方程的解法原理,能够灵活运用解法解题。
五. 教学方法1.讲授法:教师讲解一元二次方程的解法原理和步骤。
2.案例分析法:教师通过典型例题的分析,引导学生理解和解题方法。
3.小组讨论法:学生分组讨论,合作解决问题。
4.实践操作法:学生通过练习题目的解答,巩固所学知识。
六. 教学准备1.教材和教学参考书。
2.投影仪和电脑。
3.练习题目。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾方程的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的解法,引导学生理解解法原理。
3.操练(10分钟)教师给出典型例题,学生独立解答,教师进行讲解和指导。
4.巩固(10分钟)学生分组讨论,合作解决练习题目,教师进行巡回指导。
5.拓展(10分钟)教师给出一些实际问题,学生运用一元二次方程的解法进行解答。
湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1一. 教材分析《一元二次方程的解法》是湘教版数学九年级上册第二章第二节的内容。
这一节主要介绍了一元二次方程的解法,包括因式分解法、公式法等。
通过本节课的学习,学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。
在教材中,首先通过引入一些实际问题,让学生感受一元二次方程的存在。
然后,通过探究一元二次方程的解法,引导学生发现并总结解题规律。
最后,通过巩固练习,让学生进一步掌握解法,并能够解决实际问题。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。
但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解和掌握。
在学习过程中,学生可能会对一元二次方程的解法产生困惑,特别是对于因式分解法和公式法的理解。
因此,教师需要引导学生通过实践探究,加深对解法的理解。
三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。
2.过程与方法目标:通过探究一元二次方程的解法,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心。
四. 说教学重难点1.教学重点:一元二次方程的解法。
2.教学难点:因式分解法和公式法的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.引入新课:通过引入一些实际问题,让学生感受一元二次方程的存在,激发学生的学习兴趣。
2.探究解法:引导学生通过实践探究,发现并总结解题规律。
3.讲解解法:讲解因式分解法和公式法的具体步骤和应用。
4.巩固练习:让学生通过练习,进一步掌握解法,并能够解决实际问题。
5.总结提升:总结本节课的学习内容,强调解法的运用。
七. 说板书设计板书设计如下:一元二次方程的解法1.因式分解法–步骤一:将方程化为标准形式–步骤二:因式分解–步骤三:求解–步骤一:确定方程的系数–步骤二:应用求根公式–步骤三:求解八. 说教学评价教学评价主要通过学生的课堂表现、练习情况和作业完成情况进行评价。
湘教版数学九年级上册2.5《一元二次方程的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册2.5《一元二次方程的应用》是本册教材的重要内容之一。
本节课主要通过实际问题引入一元二次方程的应用,让学生了解一元二次方程在实际生活中的运用,培养学生的数学应用能力。
教材中给出了两个实际问题,分别是物体运动问题和几何问题。
通过这两个问题的解决,学生可以掌握一元二次方程在实际问题中的应用方法。
二. 学情分析九年级的学生已经学习了一元二次方程的理论知识,对一元二次方程的解法有一定的掌握。
但学生在实际应用一元二次方程解决生活中的问题时,往往会因为不能将实际问题与数学知识有效地结合而感到困惑。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,让学生在解决实际问题的过程中,自然地应用一元二次方程。
三. 教学目标1.理解一元二次方程在实际问题中的应用,培养学生的数学应用意识。
2.掌握将实际问题转化为数学问题的方法,提高学生的数学建模能力。
3.通过解决实际问题,培养学生的合作交流能力和解决问题的能力。
四. 教学重难点1.教学重点:一元二次方程在实际问题中的应用方法。
2.教学难点:将实际问题转化为数学问题,选择合适的一元二次方程求解。
五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例分析法:分析教材中的两个实际问题,让学生在案例分析中掌握一元二次方程的应用。
3.小组合作学习法:培养学生合作交流的能力,提高学生解决问题的能力。
六. 教学准备1.教材:湘教版数学九年级上册。
2.教学PPT:制作包含实际问题、解题思路和拓展练习的PPT。
3.练习题:准备一些实际问题,供学生课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示教材中的两个实际问题,让学生观察问题,引发学生的思考。
提问:“这两个问题是如何涉及到数学知识的?”引导学生回顾一元二次方程的知识。
《一元二次方程》教案教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程复习引入学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得_______ _.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.应用拓展例.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.归纳小结本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.。
湘教版数学九年级上册《2.1 一元二次方程》教学设计一. 教材分析湘教版数学九年级上册《2.1 一元二次方程》是整个初中数学的重要内容,为学生提供了理解代数和几何之间联系的途径。
本节内容通过引入一元二次方程,让学生掌握其定义、性质以及解法,从而培养学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了整式、分式、函数等基础知识,具备了一定的代数运算能力。
但部分学生对抽象的一元二次方程可能会感到难以理解,因此需要教师在教学中注意引导,激发学生的学习兴趣,提高其自主学习能力。
三. 教学目标1.理解一元二次方程的定义及其相关性质;2.学会解一元二次方程的方法,提高解决问题的能力;3.培养学生的逻辑思维能力和团队合作精神。
四. 教学重难点1.一元二次方程的定义及其与实际问题的联系;2.一元二次方程的解法及其应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究一元二次方程的定义和性质;2.利用案例分析法,让学生了解一元二次方程在实际问题中的应用;3.运用小组合作学习法,培养学生的团队合作精神。
六. 教学准备1.准备相关案例,用于讲解一元二次方程的实际应用;2.设计具有代表性的练习题,巩固学生对知识点的掌握;3.制作课件,辅助教学。
七. 教学过程1.导入(5分钟)教师通过引入生活实例,如抛物线与x轴的交点问题,引导学生思考一元二次方程的定义。
2.呈现(10分钟)教师讲解一元二次方程的定义,让学生通过观察、分析、总结出一般形式。
同时,强调一元二次方程与实际问题的联系。
3.操练(10分钟)学生分组讨论,运用一元二次方程解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师提出一系列练习题,让学生独立解答。
过程中,教师选取典型题目进行讲解,强调解题思路和方法。
5.拓展(10分钟)学生自主探究一元二次方程的解法。
教师引导学生发现各种解法之间的联系,总结出最优解法。
6.小结(5分钟)教师学生进行课堂小结,让学生回顾本节课所学内容,巩固知识点。