第五章定性和稳定性理论
- 格式:pdf
- 大小:304.48 KB
- 文档页数:16
由于常微分方程定性与稳定性方法是一个比较大的领域,这里只能提供一些基本的概念和答案,供参考:
什么是常微分方程?
常微分方程是描述物理、化学、生物等自然现象中的变化的方程。
常微分方程一般由一个或多个未知函数及其导数组成,通常用数学公式表示。
什么是定性分析?
定性分析是研究常微分方程解的行为特征而非求解具体解的方法。
它通常包括研究解的图像、相图、相平面等几何图形。
什么是稳定性?
稳定性是指一个系统在受到微小扰动后,是否能够回到原来的稳定状态的特性。
在常微分方程中,稳定性通常与平衡点相关。
什么是平衡点?
平衡点是指一个微分方程解中,导数为零的点。
在平衡点附近的解通常表现为一些稳定性特征,如稳定、不稳定、半稳定等。
什么是极限环?
极限环是指在相平面上,解沿着一个封闭轨迹无限接近平衡点的情况。
极限环通常是非线性微分方程中出现的现象,其表现形式与解在相平面上的轨迹有关。
以上是常微分方程定性与稳定性方法的一些基本概念和答案,仅供参考。
实际上,这个领域非常广阔,需要深入研究和掌握相关的理论和方法才能应用到实际问题中。
微分方程定性与稳定性分析解析微分方程是描述自然界中变化规律的重要数学工具,在各个学科领域中都有广泛的应用。
微分方程的定性与稳定性分析是研究微分方程解行为的一种方法,通过分析解的性质和稳定性来了解方程的整体行为。
本文将介绍微分方程定性与稳定性分析的基本概念和方法,并通过具体的例子来阐述其应用。
一、微分方程定性分析微分方程定性分析是指通过对微分方程解的性质进行分析,得到关于解的定性描述。
在定性分析中,我们主要关注解的长期行为和整体趋势,而不是具体的解析形式。
1. 平衡解与稳定性在微分方程中,平衡解是指满足方程右端为零的解。
对于一阶微分方程dy/dx = f(x),平衡解即为使得f(x) = 0的x值。
平衡解的稳定性是指当初始条件接近平衡解时,解的行为是否趋于平衡解。
2. 等式右端的符号分析对于微分方程dy/dx = f(x),我们可以通过分析f(x)的符号来推断解的行为。
当f(x) > 0时,解呈现上升趋势;当f(x) < 0时,解呈现下降趋势;当f(x) = 0时,解为平衡解。
3. 相图分析相图是描述微分方程解的图形,横轴表示自变量x,纵轴表示因变量y。
在相图中,曲线表示解的轨迹,平衡解表示曲线与纵轴的交点。
通过绘制相图,我们可以直观地了解解的行为和稳定性。
二、微分方程稳定性分析微分方程稳定性分析是指通过分析微分方程解的稳定性来了解方程的整体行为。
稳定性分析可以分为局部稳定性和全局稳定性两个方面。
1. 局部稳定性局部稳定性是指当初始条件接近某个平衡解时,解的行为是否趋于该平衡解。
局部稳定性可以通过线性化的方法来分析,即将微分方程在平衡解附近进行泰勒展开,并分析展开式的特征根。
2. 全局稳定性全局稳定性是指当初始条件在整个定义域内变化时,解的行为是否趋于某个平衡解。
全局稳定性的分析较为复杂,通常需要借助于Lyapunov函数或者Poincaré-Bendixson定理等方法。
三、定性与稳定性分析的应用微分方程的定性与稳定性分析在各个学科领域中都有广泛的应用。
1为什么要研究稳定性?稳定性研究的是什么?首先,一个控制系统自身的结构性质一共有三个:即稳定性,能控性,能观性。
稳定性是保证控制系统正常工作的先决条件。
一个稳定的控制系统,其被控量偏离期望值时的初始偏差应随时间的增长逐渐减小并趋于零。
具体来说,对于稳定的恒值控制系统,被控量因扰动而偏离期望值后,经过一个过渡过程时间,被控量应该恢复到原来的期望值状态;对于稳定的随动系统,被控量应能始终跟踪参据量的变化。
反之,不稳定的控制系统,其被控量偏离期望值的初始偏差将随时间的增长而发散,因此,不稳定的控制系统无法实现预定的控制任务。
《自动控制原理》稳定性理论是研究动态系统的过程(包括平衡位置)相对干扰是否具有自我保持能力的理论。
《稳定性理论》自适应控制系统的稳定性是指系统的状态、输入、输出和参数等变量,在干扰的影响下,应当总是有界的,稳定性是对所有控制系统的基本要求。
《自适应控制》系统运动的稳定性实质上归结为系统平衡状态的稳定性。
直观上,系统平衡状态的稳定性问题就是,偏离平衡状态的受扰运动能否只依靠系统内部的结构因素,或者使之限制在平衡状态的有限邻域内,或者使之最终返回到平衡状态。
控制系统的稳定性是由系统的结构所决定的,与外界因素无关,因此,系统的稳定性研究的是自治系统的稳定性,自治系统可写为:),(t x f x=&,00)(x t x =,],[0∞∈t t 其中x 为n 维状态向量。
对于连续非线性时变系统,为显含时间变量t 的n 维向量函数⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡M ΛΛΛM &&&4333222231321cos sin )(x t x t x x e t x tx x x x t 对于连续非线性时不变系统,),(t x f 中不再显含时间变量t ,即可写成)(x f x=&的形式 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡M ΛΛΛM &&&33321223132153x x x x x x x x x x 对于连续线性时变系统,),(t x f 可进一步表示为状态x 的线性向量形式,并且显含时间t⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡M ΛΛΛM &&&32313213215cos sin 3x x t x t x x e x tx x x x t 对于连续线性时不变系统,),(t x f 表示为不显含时间t 状态x 的线性向量形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡M ΛΛΛM &&&332321321653x x x x x x x x x 2稳定性理论在控制系统设计中是如何应用的?3各种稳定与吸引之间的关系是怎样的?系统特解稳定性是解在有限时间区间上对初值的连续依赖性在无穷区间上的扩展,把系统的解与特解作差,那么就把系统特解的稳定性转化为零解的稳定性,即系统状态对零状态的连续依赖性在无穷区间上的扩展。
稳定性理论5.1 外部稳定性和内部稳定性运动稳定性分为基于I/O 描述的外部稳定性和基于状态空间描述的内部稳定性。
内容包括 外部稳定性 内部稳定性内部稳定性和外部稳定性关系(1)外部稳定性考虑以I/O 描述的线性因果系统,假定初始条件为零,外部稳定性定义如下:定义5.1 称一个因果系统为外部稳定,如果对任意有界输入u (t ),对应输出y (t )均有界,即 102(),[,]()u t t t y t ββ∀≤<∞∈∞⇒≤<∞外部稳定也称为BIBO 稳定。
定理5.1 对零初始条件线性时变系统,t 0时刻BIBO 稳定的充分必要条件是 01212(,),,,,;,,,tij t h t d i q j pττβ≤<∞==∫L L证明:先证SISO 情形。
充分性,已知脉冲响应函数绝对可积,证明系统BIBO 稳定。
由基于脉冲响应的输出关系式,有ττβττττττd u d u t h d u t h t y tt tt tt ∫∫∫≤⋅≤=000)()(),()(),()(因此,对任意有界输入u (t ) ∞<≤1β)(t u ∞<≤≤⇒∫10ββττβd u t y tt )()(即系统BIBO 稳定。
再证必要性,已知系统BIBO 稳定,反设有t 1,使得 ∞=∫ττd t h t t 11),(构造有界输入 ⎪⎩⎪⎨⎧<−=>+==0100011111),(,),(,),(,),(sgn )(ττττt h t h t h t h t u∞===⇒∫∫τττττd t h d u t h t y tt t t 1010111),()(),()(这与系统BIBO 稳定矛盾,必要性得证。
MIMO 情形:对输出的每一分量,有 pj q i dt t h ij ,,,;,,,,)(L L 21210==∞<≤∫∞β定理5.2 对零初始条件线性时不变系统,BIBO 稳定的充分必要条件是,传递函数矩阵G (s )所有极点均具负实部。
稳定性理论5.1 外部稳定性和内部稳定性运动稳定性分为基于I/O 描述的外部稳定性和基于状态空间描述的内部稳定性。
内容包括外部稳定性内部稳定性内部稳定性和外部稳定性关系(1)外部稳定性考虑以I/O 描述的线性因果系统,假定初始条件为零(保证系统输入输出描述的唯一性),外部稳定性定义如下:(t时刻输出仅取决于t时刻及之前的输入) 定义5.1 称一个因果系统为外部稳定,如果对任意有界输入u (t ),对应输出y (t )均有界,即102(),[,]()u t t t y t ββ∀≤<∞∈∞⇒≤<∞外部稳定也称为BIBO 稳定。
(有界输入-有界输出)β为有界常数。
1范数:向量各元素绝对值之和;2范数:向量各元素平方之和的1/2次方。
性质1: 非负性;齐次性;三角不等式。
定理5.1 对零初始条件线性时变系统,t 0时刻BIBO 稳定的充分必要条件是(设H(t,τ)为系统脉冲响应矩阵,hij(t,τ)一个元) 01212(,),,,,;,,,tij t h t d i q j pττβ≤<∞==∫L L 证明:先证SISO 情形。
充分性,已知脉冲响应函数绝对可积,证明系统BIBO 稳定。
由基于脉冲响应的输出关系式,有 ττβττττττd u d u t h d u t h t y tt t t t t ∫∫∫≤⋅≤=000)()(),()(),()(因此,对任意有界输入u (t )∞<≤1β)(t u∞<≤≤⇒∫10ββττβd u t y tt )()( 即系统BIBO 稳定。
再证必要性,已知系统BIBO 稳定,反设有t 1,使得∞=∫ττd t h t t 101),(构造有界输入(分段函数)⎪⎩⎪⎨⎧<−=>+==010*******),(,),(,),(,),(sgn )(ττττt h t h t h t h t u∞===⇒∫∫τττττd t h d u t h t y tt t t 1010111),()(),()(这与系统BIBO 稳定矛盾,必要性得证。
第五章稳定性分析第五章:控制系统的稳定性分析3.3.5 控制系统的稳定性分析稳定性的概念线性系统稳定的充要条件线性系统稳定的必要条件代数判据(⼀般情况,特殊情况,劳斯,赫尔维茨)劳斯判据的应⽤(确定稳定域判断稳定性,求系统的极点,设计系统中的参数3.3.5.1 稳定性的概念分析⼩球平衡点的稳定性定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。
反之,若在初始扰动的影响下,系统的过渡过程随时间的推移⽽发散,则称该系统不稳定。
3.3.5.2线性系统稳定性的充要条件设系统的微分⽅程模型为:分析系统的稳定性是分析在扰动的作⽤下,当扰动消失后系统是否能回到原来的平衡状态的性能,亦系统在作⽤下的性能,亦与系统的输⼊信号⽆关,只与系统的内部结构有关。
对上述微分⽅程描述的系统亦只与等式的左端有关,⽽与右端⽆关,亦:系统的稳定性是由下列齐次⽅程所决定:其稳定性可转化为上述齐次⽅程的解c(t)若则系统稳定,则系统不稳定。
分析齐次⽅程的解的特征。
由微分⽅程解的知识,上述⽅程对应的特征多项式为:设该⽅程有k个实根(i=1,2,…k)r对复根(i=1,2,…r)k+2r=n 且各根互异(具有相同的根时分析⽅法相同,推导稍繁琐)则上述齐次⽅程的⼀般解为:其中为常数,由式中的决定,分析可见:只有当时,否则。
注:只能是⼩于零,等于或⼤于均不⾏。
等于零的情况为临界稳定,属不稳定。
综:线性系统稳定的充要条件(iff)是:其特征⽅程式的所有根均为负实数或具有负的实部。
亦:特征⽅程的根均在根平⾯(复平⾯、s平⾯)的左半部。
亦:系统的极点位于根平⾯(复平⾯、s平⾯)的左半部。
从上⾯的充要条件可以看出:系统稳定性的判断只需计算上系统的极点,看其在s平⾯上的位置,勿需去计算齐次⽅程的解(当系统复杂时的计算可能很繁),勿需去计算系统的脉冲响应。
3.3.5.3 线性系统稳定的必要条件设系统特征⽅程式中所有系数均为实数,并设(若,对特征⽅程两端乘(-1)),可以证明上述特征⽅程中所有系数均⼤于零(即)是该特征⽅程所有根在s平⾯的左半平⾯的必要条件。
常微分方程习题答案第五章定性与稳定性理论简介教材习题同步解答习题5.21. 对于方程组41114221,,xx x x x x ⎧=-⎨=⎩ 试说明 441212(,)V x x x x =+是正定的,而dVdt是常负的。
证:易知(0,0)0V =,当22120x x +≠时,12(,)0V x x > 正定。
34344444121122211212124()4()440dV V V x x x x x x x x x x x x dt x x ∂∂=+=-+-=-+=∂∂ ,故dV dt是常负。
(0,0)0V =。
2. 讨论方程组312132124,3,xx x x x x ⎧=--⎨=-⎩ 零解的稳定性。
证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时, 12(,)0V x x >即正定。
334411221212121212222(4)2(3)22()0dV x x x x x x x x x x x x x x dt=+=--+-=---< ,故方程的零解是渐进稳定的。
3. 讨论自治系统2111222212,,x Ax x x x Ax x x ⎧=-⎨=-⎩ 零解的稳定性。
证:证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时,12(,)0V x x >即正定。
222211221112221212222()2()2()dV x x x x x Ax x x x Ax x x A x x dt=+=-+-=+ ,故方程的0A >,则零解是不稳定的;若0A <,则零解是渐进稳定的。
习题5.3通过求解,确定下列各方程的奇点类型,画出相图,并确定奇点的稳定性:(1)2,3;dx x dt dy y dt ⎧=-⎪⎪⎨⎪=-⎪⎩(2)3,3;dx x dt dy x y dt⎧=⎪⎪⎨⎪=+⎪⎩(3),;dx y dt dy x dt ⎧=⎪⎪⎨⎪=-⎪⎩(4)23,3;dxx y dtdy x y dt ⎧=+⎪⎪⎨⎪=+⎪⎩解:(1)方程的奇点为(0,0)O ,方程所对应的系数矩阵为2003A -⎡⎤=⎢⎥-⎣⎦,系数矩阵所对应的特征方程为20003λλ--=-- 或2560λλ++= ,特征根为 1220,30,λλ=-<=-<奇点(0,0)O 为稳定结点。