光纤光学-第二章 - pdf
- 格式:pdf
- 大小:1.26 MB
- 文档页数:71
光纤光学的基本⽅程679KB第⼆章光纤光学的基本⽅程光纤光学的研究⽅法⼏何光学⽅法:光纤芯径远⼤于光波波长0λ时, 可以近似认为0λ→0从⽽将光波近似看成由⼀根⼀根光线所构成, 因此可采⽤⼏何光学⽅法来分析光线的⼊射、传播(轨迹) 以及时延(⾊散) 和光强分布等特性,这种分析⽅法即为光线理论。
优点:简单直观,适合于分析芯径较粗的多模光纤。
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分布等现象,分析单模光纤时结果存在很⼤的误差。
波动光学⽅法:是⼀种严格的分析⽅法,从光波的本质特性电磁波出发,通过求解电磁波所遵从的麦克斯韦⽅程,导出电磁波的场分布。
优点:具有理论上的严谨性,未做任何前提近似,因此适⽤于各种折射率分布的单模和多模光纤。
缺点:分析过程较为复杂。
光纤光学的研究⽅法⽐较光线理论与波动理论分析思路电磁分离波动⽅程wave equation时空分离亥姆赫兹⽅程Helmholtz equation纵横分离波导场⽅程2.1 麦克斯韦⽅程与亥姆赫兹⽅程⼀、麦克斯韦⽅程光纤是⼀种介质光波导,具有如下特点:①⽆传导电流;②⽆⾃由电荷;③线性各向同性。
边界条件:在两种介质交界⾯上电磁场⽮量的E(x,y)和H(x,y)切向分量要连续,D 与B的法向分量连续:⼆、光线⽅程光线⽅程光线⽅程的物理意义:当光线与z 轴夹⾓很⼩时,有:物理意义:将光线轨迹(由r描述)和空间折射率分布(n)联系起来;由光线⽅程可以直接求出光线轨迹表达式;d r/dS是光线切向斜率, 对于均匀波导,n为常数,光线以直线形式传播;对于渐变波导,n是r的函数,则d r/dS为⼀变量, 这表明光线将发⽣弯曲。
⽽且可以证明,光线总是向折射率⾼的区域弯曲。
典型光线传播轨迹反射型折射型模式分析的基本过程数学模型园柱坐标系中的波导场⽅程边界条件本征解与本征值⽅程本征值与模式分析数学模型阶跃折射率分布光纤(SIOF)是⼀种理想的数学模型,即认为光纤是⼀种⽆限⼤直园柱系统,芯区半径a ,折射率为1n ;包层沿径向⽆限延伸,折射率为折射率为2n ;光纤材料为线性、⽆损、各向同性的电介质。
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
第2章 复习思考题参考答案2-1 用光线光学方法简述多模光纤导光原理答:现以渐变多模光纤为例,说明多模光纤传光的原理。
我们可把这种光纤看做由折射率恒定不变的许多同轴圆柱薄层n a 、n b 和n c 等组成,如图2.1.2(a )所示,而且 >>>c b a n n n 。
使光线1的入射角θA 正好等于折射率为n a 的a 层和折射率为n b 的b 层的交界面A 点发生全反射时临界角()a b c arcsin )ab (n n =θ,然后到达光纤轴线上的O'点。
而光线2的入射角θB 却小于在a 层和b 层交界面B 点处的临界角θc (ab),因此不能发生全反射,而光线2以折射角θB ' 折射进入b 层。
如果n b 适当且小于n a ,光线2就可以到达b 和c 界面的B'点,它正好在A 点的上方(OO'线的中点)。
假如选择n c 适当且比n b 小,使光线2在B '发生全反射,即θB ' >θC (bc) = arcsin(n c /n b )。
于是通过适当地选择n a 、n b 和n c ,就可以确保光线1和2通过O'。
那么,它们是否同时到达O'呢?由于n a >n b ,所以光线2在b 层要比光线1在a 层传输得快,尽管它传输得路经比较长,也能够赶上光线1,所以几乎同时到达O'点。
这种渐变多模光纤的传光原理,相当于在这种波导中有许多按一定的规律排列着的自聚焦透镜,把光线局限在波导中传输,如图2.1.1(b )所示。
图2.1.2 渐变(GI )多模光纤减小模间色散的原理2-2 作为信息传输波导,实用光纤有哪两种基本类型答:作为信息传输波导,实用光纤有两种基本类型,即多模光纤和单模光纤。
当光纤的芯径很小时,光纤只允许与光纤轴线一致的光线通过,即只允许通过一个基模。
只能传播一个模式的光纤称为单模光纤。
光纤光学第三版光纤光学是一门关于光的传输和控制的学科,它在现代通信领域发挥着重要作用。
光纤光学技术的发展和应用,为人们的生活带来了巨大的改变。
本文将简要介绍光纤光学的基本原理和应用。
第一章:光纤光学的基本原理光纤光学的基本原理是利用光的全反射特性,将光信号沿光纤传输。
光纤由一个中心的光导芯和一个包围在外面的光折射层组成。
光信号在光导芯中传播时会发生全反射,从而实现光的传输。
光纤光学的主要优势是其传输速度快、容量大、抗干扰能力强等特点。
第二章:光纤光学的应用光纤光学在通信领域有着广泛的应用。
光纤通信是目前最常用的高速通信方式,它具有传输速度快、带宽大、信号衰减小等优点。
光纤通信不仅广泛应用于电话、互联网等常见通信领域,还被用于卫星通信、军事通信等特殊领域。
光纤传感技术也是光纤光学的重要应用之一。
光纤传感技术可以实现对温度、压力、光强等物理量的测量和监测。
这种传感技术具有高灵敏度、抗干扰能力强等特点,广泛应用于工业、医疗、环境监测等领域。
第三章:光纤光学的发展趋势随着科学技术的不断进步,光纤光学技术也在不断发展。
光纤光学在高速通信、数据存储、传感技术等方面的应用将进一步扩展。
光纤光学的发展趋势包括提高传输速度、增加传输容量、提高传输质量等。
光纤光学在医疗领域也有着广阔的前景。
光纤光学可以用于内窥镜、激光手术等医疗设备中,为医生提供更好的诊断和治疗手段。
总结:光纤光学是一门重要的学科,它在通信、传感和医疗等领域发挥着重要作用。
随着科学技术的不断进步,光纤光学技术将进一步发展并应用于更多领域。
光纤光学的发展将为人们的生活带来更多的便利和可能性。
让我们一起期待光纤光学的美好未来!。
光纤光学第三版第一章:光纤光学的基本概念光纤光学是一门研究光在纤维中传播和控制的学科。
随着信息技术的发展,光纤光学在通信、传感、医疗等领域得到了广泛的应用。
本章将介绍光纤光学的基本概念,包括光的传播特性、光纤的结构和制备方法等。
1.1 光的传播特性光是一种电磁波,具有波粒二象性。
在光纤中,光的传播遵循光的折射定律和反射定律。
光在光纤中的传播速度取决于光的频率和光纤的折射率。
1.2 光纤的结构光纤是由芯、包层和包覆层组成的。
芯是光信号传输的核心部分,包层用于控制光的传播,包覆层用于保护光纤。
光纤的结构对光的传播特性有重要影响。
1.3 光纤的制备方法光纤的制备方法包括拉制法、外延法和化学气相沉积法等。
拉制法是目前最常用的方法,它通过加热和拉伸光纤预制材料来制备光纤。
第二章:光纤的传输特性光纤的传输特性是指光在光纤中传播过程中的损耗、色散和非线性效应等。
本章将介绍光纤的传输特性及其对光信号传输的影响。
2.1 光纤的损耗光纤的损耗是指光在光纤中传播过程中能量的损失。
主要包括吸收损耗、散射损耗和弯曲损耗等。
降低光纤的损耗是提高光纤传输效率的关键。
2.2 光纤的色散光纤的色散是指光在光纤中传播过程中不同频率的光信号传播速度不同所引起的现象。
主要包括色散的类型、原因和补偿方法等。
2.3 光纤的非线性效应光纤的非线性效应是指光在光纤中传播过程中由于光的强度变化而引起的非线性光学现象。
主要包括自相位调制、受激拉曼散射和自发参量过程等。
第三章:光纤通信系统光纤通信系统是利用光纤传输光信号进行信息交换的系统。
本章将介绍光纤通信系统的基本原理和组成部分。
3.1 光纤通信系统的基本原理光纤通信系统的基本原理是将电信号转换为光信号,通过光纤传输光信号,再将光信号转换为电信号进行信息传输。
3.2 光纤通信系统的组成部分光纤通信系统由光源、光纤、光接收器和信号处理器等组成。
光源产生光信号,光纤传输光信号,光接收器接收光信号并转换为电信号,信号处理器对电信号进行处理。
光纤光学第三版第一章光纤的基本原理光纤是一种能够传输光信号的特殊材料,它由纤维状的高纯度玻璃或塑料制成。
光纤的核心是一个非常细长的玻璃纤维,外部则包裹着一层称为包层的材料。
光纤的传输原理基于全反射的现象,当光线从光纤的一端入射时,由于光线与接触面的入射角大于临界角,光线会完全被内部反射,从而沿着光纤的长度传输到另一端。
在光纤光学中,我们经常会遇到一些重要的概念,比如光纤的数值孔径、单模光纤和多模光纤等。
数值孔径是用来描述光纤对光线的接受能力的参数,数值孔径越大,光纤的接收能力越强。
单模光纤是指只能传输一种特定模式的光信号,而多模光纤则可以传输多种模式的光信号。
第二章光纤通信系统光纤通信系统是一种利用光纤传输信息的通信方式。
它由光源、调制器、光纤、接收器等组成。
光源是产生高强度的光信号的装置,调制器则用来调制光信号的强度、频率或相位。
光纤作为信息的传输通道,能够将光信号高效、快速地传输到目的地。
接收器则用来接收传输过来的光信号,并将其转换成电信号,供后续处理。
光纤通信系统具有许多优点,比如传输速度快、带宽大、抗干扰能力强等。
它已经广泛应用于电话、互联网、有线电视和数据中心等领域。
光纤通信系统的发展也推动了信息技术的快速发展,使人们能够更加便捷地进行通信和信息交流。
第三章光纤传感技术光纤传感技术是利用光纤的特殊性质进行测量和监测的技术。
光纤传感器可以将环境中的物理量、化学量或生物量转化为光信号,通过光纤传输到检测仪器进行分析。
光纤传感技术在环境监测、工业生产和医学诊断等领域有着广泛的应用。
光纤传感技术具有高精度、实时性好、抗干扰能力强等优点。
它可以实现对温度、压力、湿度、浓度等多种物理量的测量,而且可以远距离传输信号,适用于复杂环境中的监测任务。
第四章光纤传输系统的性能优化光纤传输系统的性能优化是提高光信号传输质量和可靠性的关键。
在光纤传输过程中,会受到多种因素的影响,比如衰减、色散、非线性等。
为了降低这些影响,可以采取一些措施,比如使用低损耗的光纤材料、优化光纤的结构、增加光纤的数值孔径等。